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In many parts of the world, forests provide high quality water
for domestic, agricultural, industrial, and ecological needs, with
water supplies in those regions inextricably linked to forest
health. Wildfires have the potential to have devastating effects
on aquatic ecosystems and community drinking water supply
through impacts on water quantity and quality. In recent
decades, a combination of fuel load accumulation, climate
change, extensive droughts, and increased human presence in
forests have resulted in increases in area burned and wildfire
severitya trend predicted to continue. Thus, the implications
of wildfire for many downstream water uses are increasingly
concerning, particularly the provision of safe drinking water,
which may require additional treatment infrastructure and
increased operations and maintenance costs in communities
downstream of impacted landscapes. A better understanding of
the effects of wildfire on water is needed to develop effective
adaptation and mitigation strategies to protect globally critical
water supplies originating in forested environments.

In many parts of the world, forests provide high quality water
for domestic, agricultural, industrial, and ecological needs 

water supplies in those regions are inextricably linked to forest
health. As population and related pressures on already stressed
watersheds increase, awareness regarding the effects of large-
scale landscape change on the water cycle grows increasingly
important for the protection of aquatic ecosystem health, and
the sustainability of downstream water supplies. The challenge
of balancing competing demands is amplified by significant
changes in water quality, quantity, timing, and availability that
may result from human activities, as well as climate change and
related land disturbances (e.g., wildfire, insect pests) in forested
regions.1 As a result, there has been a paradigm shift in forest
management in many regions of the world toward a greater
emphasis on preserving clean and abundant water flows from
forests.2

The high quality and substantial quantity of water flowing
from most forests makes these resources particularly vulnerable
to impacts of natural and man-made land disturbances. Many of
the effects of urbanization, agriculture, and forestry on water
quality and quantity, and the associated linkages to both human
and aquatic ecosystem health, are well documented. The
impacts of land disturbances, such as wildfires, are less
understood. Although wildfires can be important in maintaining
complex and productive aquatic ecosystems,3 severe wildfires
have the potential to be devastating to aquatic ecosystems
because they may release significant amounts of sediment,4

nutrients,5 heavy metals,6 and other contaminants.7 These
impacts may recover within a few years or last for numerous
decades and extend far beyond the forested headwaters.8,9 In
recent decades, many regions of the world have experienced
changes in seasonal weather that have resulted in earlier and
longer fire seasons.10,11 These trends are largely attributable to
climate change and are likely to continue.12 Thus, the
implications of wildfire for many downstream water uses are
increasingly concerning, particularly the provision of safe
drinking water, which may require additional treatment
infrastructure and increased operations and maintenance costs
in communities downstream of impacted landscapes.13 A better
understanding of the effects of wildfire on water is needed to
develop effective adaptation and mitigation strategies to protect
globally critical water supplies originating in forested environ-
ments.

■ FORESTS: CRITICAL SOURCES OF WATER SUPPLY

Forests cover approximately 31% (4 billion hectares) of the
total global land mass, providing a broad range of economic and
ecological goods and services that include natural storage,
filtration, and provision of drinking water supplies. Most
healthy forests produce high quality water because they grow in
regions with high annual precipitation and produce large
quantities of runoff with relatively low contaminant concen-
trations. High quality water from forested source watersheds
can have substantial economic benefits by limiting costs for
extensive drinking water treatment and associated infra-
structure. It has been estimated that the value of the natural
storage and filtration of water provided by global forests is
approximately $4.1-trillion US (2013) per year.14 Not
surprisingly, many population centers rely heavily on the
water provided by forests. For example, almost two-thirds of
the municipalities in the United States and about one-third of
the world’s largest cities, including Tokyo, Melbourne, Los
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Angeles, and Rio de Janeiro, receive the majority of their
drinking water from forested areas.15 Recent water supply
shortages, such as the 2011 and 2012 droughts across the U.S.
midwest, have renewed public, professional, and government
interest in understanding the critical importance of forests in
regulating water quantity and quality.16

■ A NEW ERA OF MEGA-FIRES: UNPRECEDENTED
WILDFIRE SIZE AND SEVERITY

Historically, wildfire has been an integral, natural element of
healthy terrestrial and aquatic ecosystems because it signifi-
cantly governs the structure and function of plant and animal
communities and biogeochemical cycling. Globally, wildfires
burn extensive areas every year (∼300−450 Mha).17 Over the
period of record (1960−2013) an average of 1.8-million ha
year−1 has burned in the U.S.18 (Figure 1), while in Canada and

Australia approximately 2.1-million and 0.8-million ha year−1,
respectively, burned during a similar period.19 Paleoecological
records and landscape-scale data have shown that fire frequency
has continually responded to climate change, with periods of
intense drought featuring more fires and higher severity
fires.20,21 The Intergovernmental Panel on Climate Change
(IPCC) noted that climate warming will continue to increase
the risk of more extreme fire events.12 This is consistent with
predictions of more frequent, larger fires in Canada, the western
U.S., South America, central Asia, southern Europe, southern
Africa, and Australia.10,22 While climate is generally the
dominant driver defining fire’s domain, a desire to protect a

range of economic, recreational, and ecological forest values has
led to decades of intensive fire suppression, contributing to
decreases or exclusion of wildfire from the landscape in many
regions (Figure 1). The accumulation of forest fire fuels (Figure
2) has been an unintended consequence of aggressive fire
suppression policies, creating conditions in some areas in which
extreme wildfire behavior over a greater area may be more
likely. Thus, in recent decades, a combination of climate
change, extensive droughts, fuel load accumulation, and
increased human presence in forests (wildland−urban inter-
face) have contributed to an increasing trend in wildfires in
many parts of the world (Figure 1), resulting in increases in
area burned despite increasingly sophisticated advancements in
fire suppression technologies and billions of dollars spent on
fire management and fire suppression annually.23−25 This new
wildfire regime includes “mega-fires”, a new class of rare
wildfires with behavior that exceeds all efforts at control,
regardless of the type, size, or number of fire suppression
resources deployed.26

Mega-fires have increased alarmingly in many parts of the
world. In North America and Australia, mega-fires now account
for approximately 90−95% of the annual area burned, even
though they represent <1% of the number of wildfires.27 These
fires can cause catastrophic damages that include human
casualties and substantial economic losses. The 2009 Black
Saturday mega-fire, for example, represents the deadliest natural
disaster in Australia’s history, burning approximately half a
million hectares, killing 173 people, and destroying more than
5500 homes and structures.28 The second costliest disaster in
Canada was the 2011 Slave Lake mega-fire (∼$700-million in
damages).29 Recent mega-fires in Greece, the Russian
Federation, South Africa, southeast Asia, and Latin America
have also been some of the most catastrophic in those
countries/continents history, collectively burning >30-million
hectares of forested land.30

Projections for increased occurrence of catastrophic mega-
fires have intensified concerns regarding the threats posed to
the high quality water from forested landscapes and resulted in
many new initiatives to reduce wildfire threats to aquatic
systems and drinking water supply. The U.S. Department of
Agriculture (USDA) Forest Service announced a new vision for
America’s forests in 2009 with a focus on promoting
disturbance-resistant and resilient forests to ensure that forested
landscapes continue to provide clean, abundant water supplies.2

The USDA has already committed nearly $22-million to
Collaborative Forest Landscape Restoration projects designed
to maintain and improve water quality from forested water-

Figure 1. Annual area burned in the U.S. from 1960 to 2013. The red
dashed line indicates the rolling 5-year average area burned.18

Figure 2. Changes in vertical arrangement and horizontal continuity in a ponderosa pine stand in Bitterroot National Forest, Montana over time (A,
1909; B, 1948; C, 1989) in which fire was excluded since 1895. (Source: US Forest Service.)77
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sheds across the U.S. primarily by reducing wildfire risk. It also
launched Forests to Faucets, aimed at modeling and mapping
land areas of the continental U.S. most important to surface
drinking water, the role forests play in protecting these areas,
and the extent to which these forests are threatened by wildfire.
Despite these positive actions, even the most aggressive fire
suppression and land and fuels management programs are not
likely to prevent mega-fires.

■ MORE WATER, MORE OFTEN?
Wildfires can affect hydrological processes (interception,
infiltration, and evapotranspiration) that influence the timing
and magnitude of streamflows (base flows, peak flows, and
annual water production).31 Consumption of forest vegetation
by fire reduces evaporative losses from forests through
precipitation interception and evapotranspiration, thereby
increasing rain and snow reaching the ground and increasing
soil moisture, runoff, and streamflows.32 Furthermore, in
temperate climates greater solar energy reaching the snowpack
also causes earlier onset of snowmelt, which may have
significant implications for reservoir storage and aquatic
ecosystem health. In the Northern Rocky Mountains, for
example, unburned forested sites captured 55−60% of the snow
water equivalent (SWE) compared to burned sites and
complete removal of the snowpack occurred approximately
9−15 days earlier in burned stands because of a 2-fold increase
in snowmelt rates.33

Postfire hydrological processes can also be impacted by high
temperatures that may damage soils in ways that are complex
and not well understood. In some instances, a water repellent
(hydrophobic) layer develops at or near the soil surface, while
in other cases a natural background water repellent layer is
exposed after burning and removal of the protective vegetation
and litter and duff.34 This can severely reduce or prevent water
from wetting or infiltrating into soils during rain storms or
snowmelt, promoting rapid overland runoff.35 The degree of
fire-induced water repellency and its longevity after wildfire
tend to be most pronounced in coarse grained soils, drier soils,
and after higher intensity and severity fires.36 High severity fires
can also produce complex responses in aggregate stability of
soils ranging from disaggregation to strong aggregation
depending on soil characteristics (e.g., texture, water content,
organic matter).37 These changes in soil characteristics can
affect hydrologic properties, such as infiltration, which promote
greater overland flow and more rapid delivery of water to
streams.38 The timing and amount of runoff from a site may
also be influenced by surface sealing due to postfire ash layer,
fine sediments, and needle cast.39 Collectively, the impacts of
wildfire on hydrologic processes can cause precipitation with
frequent return intervals to generate disproportionately large
peak flows, shorten time to peak flows, and increase
susceptibility to flash floods.40

Long-term records of prefire streamflows (discharge) are
rarely available, making it difficult to evaluate the subsequent
effects of fire. However, in the few cases where data are
available, 2- to 5-times increases in peak flows over 6−7 years
have been reported.40 More typically, unit-area peak flows after
wildfires are compared to nearby unburned, reference catch-
ments; however, these data are not ideally comparative because
of inherent differences in watershed behavior that reflect the
unique interaction of vegetation, topography, geology, drainage
form, and climate that govern hydrologic response. Several
investigations have concluded that lower severity wildfires

produce small or no measurable effects on postfire peak flows
while the combination of moderate to high severity burns and
short-intense precipitation events can produce peak flows that
are 5- to 870-times larger than those previously observed in
unburned catchments.32,41

■ EROSION: PASSING ON THE LEGACY OF WILDFIRE
TO WATER

Soil erosion is a leading cause of global water pollution: it
involves the detachment, breakdown, transport/redistribution,
and deposition of sediments. Wildfires increase the suscepti-
bility of soils to erosion, which depends on multiple factors,
including fire severity, site specific characteristics (e.g.,
watershed area, topography, geology, vegetation, sediment
availability), and variability in precipitation and snowmelt.42

Compared to lower severity fires, higher severity fires consume
a greater proportion of aboveground vegetation, forest litter,
and other organic matter (e.g., roots) within the soil  these
impacts expose more of the soil to precipitation and, in some
cases, increase erosion by several orders of magnitude.5,31 The
greatest erosion events typically occur before vegetation has
redeveloped and often coincide with episodic, short-duration,
high intensity rain storms immediately following severe
wildfire.40 Accelerated erosion, coupled with the occurrence
of hydrophobic soils, reduced water infiltration rates, overland
runoff, or mass soil failures on hillslopes can also produce
catastrophic debris flows in some environments.43

The redistribution and delivery of mineral soil and ash from
hillslopes to receiving streams after wildfire can have
devastating consequences on water quality. Increased sediment
loading can elevate turbidity and act as a vector for downstream
transport of contaminants, including heavy metals, nutrients,
organics, and pathogens.44 These impacts may propagate
downstream and manifest in reservoirs and lakes because fine
sediment has lower postfire settling velocities due to higher
organic content and porosity.45 Postfire sediment loads and
turbidity are generally much higher and more variable than in
undisturbed streams, especially following severe fires and after
storm flows or during spring snowmelt.9,13 The high severity
Hayman fire (Colorado), for instance, caused turbidity to
increase 3- to 4-fold because of high erosion rates compared to
watersheds burned at a lower severity.46

Aquatic ecosystems can be impacted (growth and survival of
macrophytes, aquatic invertebrates, and fish) by sediment and
turbidity through clogging of the streambed with fine sediment,
increased channel instability, altered stream temperatures,
impairment of fish feeding, and destabilized channel morphol-
ogy.47,48 Shifts in macroinvertebrate communities in Idaho
streams, for example, were attributed to increased sediment
following a high severity wildfire.49 Similarly, in Australia, fish
abundance decreased by as much as 95−100% in burned stream
reaches due to increased postfire sedimentation and subsequent
decreased dissolved oxygen levels.50

From a water supply perspective, postfire sediment loads
increase the probability of degrading water quality (taste, odor,
color), impairing drinking-water treatment processes and
decreasing the operational life-span of reservoirs.13 For
instance, vast quantities of sediment (∼765,000 m3), ash, and
debris flowed into the City of Denver’s water supply reservoirs
(Cheesman and Strontia Springs) after the 2002 Hayman fire,
which burned ∼55,850 ha of forest in the Colorado Rockies.51

To minimize the impacts, Denver Water invested $7.3-million
on several restoration strategies after the fire and also planted
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175,000 trees over seven years after the fire. Despite these
efforts, a $30-million dredging project was required in 2010 to
remove ∼480,000 m3 of sediment from the Strontia Springs
Reservoirenough to cover a football field to a depth of 61
m.52 In 2012, severe wildfires (Waldo Canyon, Hewlett Gulch,
and High Park) burned forests throughout Colorado,
necessitating the installation of upstream monitors to gauge
ash and sediment levels, diversion of sooty water from
treatment plant intakes, and restoration efforts to prevent
mud, debris, and ash from entering water supplies.
Once in the stream, eroded materials may be transported

downstream or deposited and “stored” in stream beds, river
banks, and flood plains during periods of low flow. These
sediments are often remobilized and transported further
downstream during subsequent high flow periods (e.g., summer
rain storms, spring snowmelt).4,53 Thus, while increased
erosion rates generally diminish quickly after fire (∼3−8
years), the legacy of this impact may be extremely long-lasting
(∼10 to >100 years).9,54 Four years after the Buffalo Creek fire
in Colorado, for example, it was estimated that 67% of the
sediment mobilized by postfire erosion remained stored in
streams and would likely persist for more than 300 years.40 As
fires become more severe in the future, to the point of
deleteriously impacting tree colonization and forest regrowth,
erosion rates and associated sediment storage in streams can
only be expected to increase.4,46

■ VARIABLE HEAVY METAL RELEASES

Wildfires liberate accumulated heavy metals, possibly in
alarmingly high pulses, to the atmosphere and adjacent streams,
potentially impacting terrestrial and aquatic ecosystem health.55

This is often most pronounced when fires burn mature forests,
especially where fire has been suppressed and heavy metals may
have accumulated for years or decades because of atmospheric
deposition.56 The 2002 Hayman fire in the mature forests along
the Colorado Front Range of the Rocky Mountains, for
example, resulted in 2- to 2500-times increases in the
concentrations of arsenic, aluminum, cadmium, iron, lead,
and mercury.57 Similarly, after the 2003 Lost Creek wildfire,
mean concentrations of many metals were elevated in burned
watersheds and postfire salvage logged watersheds for at least
five years after the fire.58 Following the 2010 Fourmile Canyon
fire near Boulder, Colorado, in-stream concentrations of
aluminum, iron, and manganese also were elevated.59

While postfire metal concentration and export data for
receiving streams are limited, the strong affinity of metals for
ash and fine sediments indicates fire effects on metals may be
long lasting.60 Because sediment is the primary vector for metal
transport, the highest in-stream heavy metal concentrations and
exports are typically associated with intense summer storms and
spring snowmelt events when erosion rates of burned materials
and surface soils are greatest. A postfire rain storm (∼38 mm in
2 h) in southeast Australia, for example, delivered large
amounts of sediment (59,000 mg L−1 suspended solids and
129,000 NTU) into a drinking water supply, causing
concentrations of arsenic, iron, lead, and chromium to rise to
levels exceeding World Health Organization (WHO) guide-
lines.61 Similarly, during the first two years after the Lost Creek
fire, total mercury concentrations exceeded both chronic and
acute provincial water quality guidelines on multiple occasions
during storm events. An extremely high mercury pulse of 265
μg L−1 (0.001 μg L−1 = maximum acceptable concentration in
drinking water) was measured after a moderate precipitation
event (∼20 mm) several days following a very large event that
fully saturated the ground and produced very high stormflow.13

Mercury is particularly concerning because of its potential to
bioaccumulate and biomagnify, which can result in health
problems for consumers of fish.6 Forest fires in a range of
environments have produced elevated total and methyl mercury
concentrations in sediment and fish−in some cases exceeding
the advisory limit for human consumption (0.5 μg g−1 wet
weight) from the World Health Organization (WHO).62

■ NUTRIENT LEGACY OR RECOVERY?

Aquatic ecosystem structure and composition can be rendered
almost unrecognizable (Figure 3) by high intensity, high
severity wildfires, which release significant amounts of nutrients
that have the potential to contribute to substantive shifts in
water quality. Increased occurrence of mega-fires has
underscored the need to understand how wildfires, especially
in forested headwaters, impact nutrient concentrations or loads,
threatening aquatic systems, recreational water use, and
municipal water supply (Figure 4).5 A variety of materials are
released when organic matter (dead and living) undergoes
complete or partial combustion and the ash is deposited on the
soil surface. Nutrients associated with ash or those remaining
on-site are susceptible to leaching into and through soil. Some
nutrients (phosphorus, nitrogen, carbon) can be transported in
dissolved or particulate forms (associated with ash or sediment)

Figure 3. Examples of unburned (left) and postfire (right) stream beds. (Source: Southern Rockies Watershed Project.)8
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by surface runoff or wind into adjacent streams.63 Streams that
drain burned forested landscapes often have increased levels of
phosphorus, nitrogen, dissolved organic carbon (DOC), sulfate,
chloride, calcium, magnesium, sodium, and potassium.5,13

However, the magnitudes and duration of water quality
changes following fire are highly variable, depending primarily
on the interaction between fire characteristics (frequency,
intensity, severity), watershed characteristics (physiography,
soils, geology, vegetation type), postfire climatic regime, and
pollutant of interest. As a result, observations have often been
conflicting, even for similar ecosystem types. This makes it
difficult to generalize expected water quality and ecosystem
responses and to apply knowledge derived from one region to
another.
The nutrient shifts of greatest concern after fire are those

observed in phosphorus, nitrogen, and carbon, which are the
foundational elements of aquatic ecosystems. Small increases in
nutrients P and N, for example, in combination with greater
light availability because of reduced shade from the burned
riparian canopy can accelerate growth of aquatic plants and
benthic communities, which alter aquatic ecosystem structure
and composition.8,64 Excessive inputs of P and N increase the
risk of eutrophication of freshwater systemsone of the most
widespread water quality issues globallyby reducing water
quality, causing toxic algal blooms, and increasing fish kills.65 A
conservative estimate of the current costs of eutrophication of
U.S. fresh water is $813 million annually:66 this value will likely
rise in areas impacted by larger, more severe wildfires.
In wildfire-affected streams, the production of N can range

from ∼2- to 250-times greater than those in undisturbed
streams.8 The largest fluxes of N (primarily as nitrate) are
generally observed in the first year postfire as N is rapidly
mobilized with runoff.67 Thereafter, high N fluxes typically only
coincide with extreme precipitation events. In contrast, wildfire
impacts on P production can exceed those of other nutrients. In
burned watersheds, P concentrations 1.4- to 400-times greater
than those in unburned watersheds have been reported.63,68 In
contrast to N, P transport in surface runoff from hillslopes to
receiving waters is predominantly particle-associated and linked
with erosion, which can become an important long-term source

of P for aquatic ecosystems.8,69 Sediments in river beds draining
burned landscapes can contain a higher fraction of the most
bioavailable forms of P, thus these P rich riverbed sediments
can prolong the effects of wildfire on P concentrations in fire
affected rivers.70

Much of our current understanding of nutrient (P, N, C)
mobility and fate after fire originates from studies of low
severity fires. Data from catastrophic fires are scarce and the
effects are poorly understood. More severe, stand-replacing
wildfires could result in greater nutrient availability and delivery
to streams. For example, following the Greater Yellowstone
Ecosystem fires (1988) in mature lodgepole pine forests, a
gradient was observed in stream nitrate and phosphate
concentrations with severe burn > moderate burn > light
burn > unburned watersheds.71 Following fires in the San
Dimas Experimental Forest in California, nitrate concentrations
in streams corresponded with burn severity; moderate fires
produced concentrations 3-times greater than unburned
watersheds, while severely burned watersheds produced
concentrations ∼40-times greater than unburned watersheds.72

Similar to sediment, the longer term legacy of water quality
effects may persist following severe wildfires, which can delay
vegetation regeneration due to high soil seed-bank mortality or
a deep ash layers resulting in poor germination success.73

Dissolved organic carbon (DOC) is a critical component of
the carbon cycle and energy balance in streams and is a primary
food source in aquatic food webs. Elevated DOC levels can
acidify freshwaters by forming organic acids and decrease light
attenuation in streams, which is critical for autotrophs. In
addition, DOC can influence the solubility, transport, and
toxicity of trace metals and nutrients.74 Excess DOC is also a
concern for downstream community water supply and
consumer health because it can create taste and odor problems,
decrease the effectiveness of the water treatment process,
increase the formation of potentially carcinogenic chemical
disinfection byproducts, and ultimately increase operating costs
in impacted communities.13,75 DOC concentration data
following high intensity or high severity fires are limited. In
the first year after the high severity Hayman fire, DOC
concentrations were ∼3-fold higher in the burned stream

Figure 4. Water supply pressures, state, and impact due to wildfire, including potential responses to mitigate the impacts in the future.
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(Fourmile Creek) than the unburned (Pine Creek) and the
95th percentile was 25.1 mg L−1.57 Similarly, in the first four
years after the Lost Creek wildfire in Alberta the 95th percentile
DOC remained low in streams draining unburned watersheds
(3.8 mg L−1). In contrast, DOC levels were elevated in streams
draining burned (4.6 mg L−1) and postfire salvage-logged (9.9
mg L−1) watersheds.13 The Mortar Creek fire, which burned
26,000 ha of mixed-conifer Rocky Mountain forest, also
resulted in elevated DOC concentrations in burned watersheds
with the highest concentrations during high flow events (e.g.,
stormflows, spring snowmelt freshet).76

■ OUTLOOK

Wildfire can significantly threaten waterwith potentially
catastrophic implications for aquatic ecosystems, community
infrastructure, water supply and treatment, and even public
health. While these threats are generally understood, the
specific impacts vary substantially by geographic region. Thus,
the impacts on ecosystems and humans are highly variable
not only worldwide, but even within specific ecoregions.
Impacts produced by one fire are not the same as those
produced by another fire; moreover, not all fires are
catastrophic. A major challenge remains to provide actionable
science and reliable capacity to predict impacts of wildfire on a
range of water values (Figure 4). This is impossible without
research at appropriate temporal and spatial scales  that
means necessarily capturing the effects produced by short- and
long-term variation in hydroclimate.
The future of water supply is changing because of climate

and its relationship to wildfire. This will likely impact the
provision of water for domestic, agricultural, industrial, and
ecological needs in some regions. Natural resource managers
and agencies responsible for water or land will increasingly
need to anticipate and prepare for these effects. Undoubtedly,
difficult decisions will need to be made. For example, should
drinking water supply and treatment in smaller communities be
regionalized? Should forests be managed to protect water from
wildfire? Who should pay for land and water management?
These decisions will require the meaningful integration of
science, management, and policy.
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