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Abstract 

 
Contaminant exposure is one possible contributor to population declines of endangered fish 

species in the Sacramento-San Joaquin Estuary, California, including the endangered delta smelt 

(Hypomesus transpacificus). Herein we investigated transcriptional responses in larval delta 

smelt resulting from exposure to water samples collected at the Department of Water Resources 

Field Station at Hood, a site of concern, situated upstream of known delta smelt habitat and 

spawning sites and downstream of the Sacramento Regional Wastewater Treatment Plant 

(SRWTP). Microarray assessments indicate impacts on energy metabolism, DNA and RNA 

processing, the immune system, development and muscle function. Transcription responses of 

fish exposed to water samples from Hood were compared with exposures to 9% effluent samples 

from SRWTP, water from the Sacramento River at Garcia Bend (SRGB), upstream of the 

effluent discharge, and SRGB water spiked with 2 mg/L total ammonium (9% effluent 

equivalent). Results indicate that transcriptomic profiles from Hood are similar to 9% SRWTP 

effluent and ammonium spiked SRGB water, but significantly different from SRGB. SRGB 

samples however were also significantly different from laboratory controls, suggesting that 

SRWTP effluent is not solely responsible for the responses determined at Hood, that ammonium 

exposure likely enhances the effect of multiple-contaminant exposures, and that the observed 

mortality at Hood is due to the combination of both effluent discharge and contaminants arising 

from upstream of the tested sites. This study demonstrates that transcriptomic responses of fishes 

can be valuable endpoints for the detection of pollutants and their sources in surface waters at 

sublethal and even non-detectable concentrations. 

 

Keywords: delta smelt; Hypomesus transpacificus; ammonium; wastewater effluent; 

microarray; quantitative PCR. 

 

Introduction 

 

Aquatic ecosystems are among the most diverse ecosystem types worldwide, however, there has 

been significant declines in biodiversity over the past decades; attributed to habitat destruction 

and degradation, flow modification, invasive species, overexploitation, and overall water quality  

(Kennish 2002; Dudgeon, Arthington et al. 2006; Geist 2011). The Sacramento-San Joaquin 

Estuary in California is an example of detrimental effects resulting within an aquatic ecosystem 

with intense anthropogenic impact (Lund, Hanak et al. 2010; Cloern and Jassby 2012). Endemic 
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to this system is a pelagic fish species that has exhibited a gradual decline in population since the 

1980s (Moyle, Herbold et al. 1992; Bennett 2005) with a significant step decline recorded in 

2000 (Feyrer, Nobriga et al. 2007; Sommer, Armor et al. 2007). The delta smelt (Hypomesus 

transpacificus) was classified as threatened under the Federal and State Endangered Species Act 

(ESA), 1993, and listed as endangered under the Californian Endangered Species Act (CESA) in 

2010 (DFG 2011). It is denoted as a species with an annual life cycle, low fecundity, and a 

relatively limited habitat range, making this species highly susceptible to changes in the 

Sacramento-San Joaquin Estuary (Moyle, Herbold et al. 1992). Several factors are postulated to 

contribute to the decline of the delta smelt population. Habitat degradation, habitat loss, 

competition with introduced species, decreased food availability, for example, along with 

changes in abiotic water quality parameters like temperature, salinity and turbidity, have all been 

the subject of critical scrutiny and are considered to play a significant role in declining delta 

smelt numbers (Moyle, Herbold et al. 1992). Harmful effects on biota in the Sacramento-San 

Joaquin estuary are also likely evoked by contaminants entering the delta through anthropogenic 

activities such as wastewater treatment effluent, and agricultural and urban runoff (Kuivila and 

Foe 1995; Thompson, Hoenicke et al. 2000; Kennish 2002; Moon 2004).  

 

The impacts of environmentally relevant concentrations of pollutants on aquatic organisms are 

often subtle, and thus difficult to determine, however, in the past decade researchers in the 

ecotoxicogenomics field have successfully evaluated sublethal effects of contaminants upon a 

number of species (Watanabe and Iguchi 2006; Denslow, Garcia-Reyero et al. 2007; Geist, 

Werner et al. 2007; Connon, Hooper et al. 2008; Garcia-Reyero, Adelman et al. 2008; 

Heckmann, Sibly et al. 2008; Garcia-Reyero, Kroll et al. 2009; Garcia-Reyero, Lavelle et al. 

2011). Genomic responses at the individual level, often assessed through microarray technology, 

have been extrapolated to effects on populations (Snape, Maund et al. 2004; Miracle and Ankley 

2005; Watanabe and Iguchi 2006; Connon, Hooper et al. 2008; Heckmann, Sibly et al. 2008; 

Fedorenkova, Vonk et al. 2010) creating a powerful tool for use in risk assessment (Hamadeh, 

Bushel et al. 2002; Watanabe and Iguchi 2006). Although genome sequencing for non-model, 

ecologically relevant species is still in the early stages (Denslow, Garcia-Reyero et al. 2007), the 

use of transcriptome analyses in aquatic toxicology is rapidly growing, and its application has the 

potential to provide information about mechanisms and modes of action for classes of chemicals, 

as well as provide specific signatures of toxicity (Hamadeh, Bushel et al. 2002; Denslow, Garcia-

Reyero et al. 2007; Connon, Geist et al. 2012).  
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We have previously developed a cDNA microarray for the delta smelt (Connon, Geist et al. 

2009), which was used to assess the effects of single contaminants (i.e. esfenvalerate, copper and 

ammonia) on larval fish (Connon, Geist et al. 2009; Connon, Beggel et al. 2011; Connon, 

Deanovic et al. 2011). However, the transferability of the methods applied in these studies to 

complex chemical mixtures commonly encountered in the field has not yet been tested. We 

utilize microarray and quantitative PCR analyses to assess transcription responses in delta smelt 

exposed to water samples from the Sacramento River. Samples were collected at the California 

Department of Water Resources Water Quality Monitoring Station at Hood, a test site of interest 

and identified as being of poor water quality (Werner, Deanovic et al. 2010), located downstream 

of the Sacramento Regional Wastewater Treatment Plant (SRWTP), and at the Sacramento River 

at Garcia Bend (SRGB), located upstream from the SRWTP effluent outlet. The SRWTP that 

discharges its effluent into the lower Sacramento River, which ultimately leads to delta smelt 

spawning and larval nursery areas. Total ammonium in the Sacramento River, downstream of the 

SRWTP point of discharge, has been recorded at concentrations up to 1.0 mg/L, whilst 

concentrations of 0.28 mg/L have been reported directly upstream from known delta smelt 

spawning and nursery areas (Werner, Deanovic et al. 2010). The effects of ammonia on delta 

smelt have previously been reported (Connon, Deanovic et al. 2011), however there is a lack of 

information on the effects of effluent sourced ammonia, within a complex mixture of 

contaminants, which is integrated into this ambient water toxicity study.  The aim of this study 

was to investigate whether elevated ammonium entering the system would act synergistically 

with contaminants present in wastewater effluent discharge, and those originating upstream of 

the discharge point.  

 

1. Materials and methods 

 

Test organism  

Delta smelt were obtained from the University of California Davis (UC Davis) Fish 

Conservation and Culture Laboratory (UCD-FCCL) in Byron, CA, USA and transported to the 

Aquatic Toxicology Laboratory (presently Aquatic Health Program) UC Davis in black 2.5 gal 

buckets at a maximum density of 150 fish per bucket. Containers were placed in coolers packed 

lightly with ice to maintain a temperature of 16 ±2 °C during transport. The control water 

utilized in this test was made from water obtained from the hatchery. Hatchery water was also 

used for laboratory control and low conductivity control treatments. This water was pumped 
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directly from the intake channel of the H.O Banks Pumping Facility near Byron, CA, and passed 

through a series of sedimentation beds containing natural vegetation to allow any suspended 

solids in the water to precipitate. The less turbid water was then exposed to an ozonation system 

to kill any potentially harmful microbes. Ozonated FCCL water was transported to UCD-ATL, 

and appropriate control waters were prepared for the test one day before fish were collected.  

 

Water sample collection 

Two exposure tests are presented in this study: a) Field station assessments on water sampled at 

Hood (April 30
th

, 2009), and b) Upstream and effluent exposures on SRGB and SRWTP water 

samples (June 11th, 2009). The latter was conducted to assess the effect and contribution of 

contaminants, including total ammonium, to sites downstream of the SRWTP outlet, and as such 

also included SRGB water spiked with ammonium, as detailed below.  

 

a) Samples were collected at the California Department of Water Resources Water Quality 

Monitoring Station at Hood (Coordinates: 38°22‟03.6”N 121°31‟13.6”W; hereafter referred to as 

Hood) a site located approximately 8 miles downstream of the Sacramento Regional Wastewater 

Treatment Plant (SRWTP). Samples were taken from shore and pumped from a depth of 

approximately 0.5 m using a standard water pump.  

b) Sacramento River water was collected at Garcia Bend, approximately 2 miles upstream 

from the SRWTP. This water was either spiked with a concentrated stock solution of ammonium 

chloride (4,000 ppm NH4CL, Sigma-Aldrich, ACS reagent grade >99%), or diluted with SRWTP 

effluent of about 9% dilution to match desired ammonia concentrations of 2 mg.L
-1

 total 

ammonium. SRWTP effluent was collected daily in form of 24h composite samples. Thus fish 

were exposed to SRGB water, SRWTP effluent dilution, and SRGB water with matching 

ammonium concentrations. Selected concentrations of total ammonium were based on effect 

concentrations determined in a related study (Connon, Deanovic et al. 2011). 

 

Water samples for both exposures were collected on a daily basis, one day prior to being used for 

testing throughout the test. 5-gal clear low-density polyethylene (LPDE) cubitainers (total 35 

gallons) were used for transport of water samples to the UCD ATL and were kept on ice in order 

to maintain the sample temperature at 0-6°C upon receipt at UCD ATL, where water samples 

were stored in an environmental chamber at 4°C. 
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Exposures 

Fish were maintained for 48 h in test conditions prior to test initiation, and treated with gram-

negative and gram-positive antibiotics (Maracyn and Maracyn-2, Virbac AH Inc., Fort Worth 

TX), to reduce the likelihood of disease-induced effects, and eliminate possible infections that 

may have been present from hatchery (Connon, Deanovic et al. 2011). Final antibiotic 

concentrations were 5.3 mg
.
L

-1
 Maracyn (erythromycin) and 0.26 mg

.
L

-1
 Maracyn-2 

(minocycline). Use of test organisms was approved by the UC Davis Institutional Animal Care 

and Use Committee (Animal Use Protocol for Animal Care and Use #13361). This institution is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, 

International and has an Animal Welfare Assurance on file with the Office of Laboratory Animal 

Welfare. The Assurance Number is A3433-01. 

For all tests, tests were conducted in 10-L aquaria filled with 7-L of water using 41 days post 

hatch (dph) and 47-dph-old delta smelt, for Hood, and SRWTP and SRGB samples, respectively. 

Experimental control fish for both exposures were maintained in hatchery water from UCD-

FCCL. Electrical conductivity (EC, adjusted to 20°C) was modified using deionized water, to 

match that of the respective test controls. Delta smelt are known to be affected by turbidity levels 

(Hobbs, Bennett et al. 2006; Feyrer, Nobriga et al. 2007), thus the turbidity of controls was 

adjusted to match that of the field water samples using Nanno 3600™, a concentrated 

Nannochloropsis algae solution (68·10
9
 cells

.
ml

-1
; Reed Mariculture, Inc. Campbell, CA). 

Twelve larval fish were placed into each of four replicate aquaria per experimental treatment. 

Animals were maintained at 17 ± 1.2°C, a light:dark cycle of 16h:8h, and fed “ad libitum” three 

times a day during the acclimation and testing period with live Artemia franciscana. At test 

initiation, water in aquaria was drained to approximately 2 L, replenished with respective water 

samples, and exposed in a flow-through system at a rate of 1.44-L per day. Fish were exposed for 

7 days and EC, pH, temperature, dissolved oxygen (DO), turbidity and total ammonium were 

measured daily. Total ammonia was measured using a Hach (Loveland, CO) AmVer Ammonia 

Test‟N Tube Reagent Set, “low range” test kit (0-2.5 mg/L N). Unionized ammonia 

concentrations for all samples were calculated using measured total ammonia-N, temperature, 

EC and pH. Mortality was recorded on a daily basis, and any dead fish were removed. All tests 

were terminated at the same time of day (noon), when surviving fish were counted, euthanized 

with buffered(neutral pH, using sodium bicarbonate (NaHCO3)) tricaine methanesulfonate (MS-

222, Sigma, St. Louis, MO, USA), rinsed in deionized water, snap-frozen, and stored at -80°C 

for subsequent genomic analyses. 
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Microarray screening on field station assessments (Hood) 

Microarray assessments were carried out on fish exposed to water samples from Hood. 

Subsequent analyses of SRGB and SRWTP tests were conducted using qPCR on genes identified 

as responding significantly from the microarray study (see below). We utilized a delta smelt 

cDNA microarray with 8,448 expressed sequence tags (ESTs), the development of which is 

described in (Connon, Geist et al. 2009). In brief, purified PCR fragments ranging in size from 1-

4 kb, were pin-printed in duplicate onto epoxysilane coated glass slides (Schott-Nexterion, 

USA). PCR fragments were printed without knowledge of sequence annotation, thus only genes 

that were differentially expressed following exposures were sequenced for identification. 

Genomic assessments were conducted between larvae exposed to water from the Sacramento 

River at Hood and control water (detailed above). Total RNA was extracted from whole, 

individual fish, using Trizol Reagent (Invitrogen) following manufacturer's guidelines. RNA 

concentrations were determined using a NanoDrop ND1000 Spectrophotometer (NanoDrop 

Technologies, Inc., Wilmington, DE, USA), total RNA 260/280 and 260/230 ratios ranged 

between 1.88 and 2.15 and 1.70 and 2.10, respectively. Total RNA integrity was verified through 

electrophoresis on a 1% agarose gel. Total RNA from 3 fish per replicate, per treatment, was 

pooled, resulting in four biological replicates and four controls. A total of 500ng total RNA for 

each was amplified using a SuperScript
TM

 Indirect RNA Amplification System (Invitrogen). 

Resulting amplified RNA (aRNA) was labeled with Alexa fluor dyes ® 555 and 647 (Invitrogen) 

as per manufacturer‟s instructions. Two color microarray assessments were carried out using 1µg 

of amplified aRNA for each control and exposed sample, including dye swaps for each (total 4 

slides), which were hybridized for 16 hours at 42°C. Slides were scanned using a GenePix 

4000B scanner (Axon Instruments). Microarray data, experimental design and hybridization 

details are available for download through the Gene Expression Omnibus repository 

(www.ncbi.nlm.nih.gov) accession number GSE 40991. 

 

Data was analyzed using LIMMA GUI (Linear model for microarray analysis graphical user 

interface; (Robert Gentleman 2005), written in the R-programming language (available through 

Bioconductor http://www.Bioconductor.org). Data was normalized using print-tip Lowess and 

between arrays applying average intensity quantile normalization methods, with background 

correction. A linear model fit was computed using the duplicates on the arrays and least-squares 

method, with Benjamini Hochberg false discovery rate adjustment (Benjamini and Hochberg 

1995). Only a small proportion of features on the cDNA microarray were previously sequenced 

(Connon, Geist et al. 2009; Connon, Beggel et al. 2011; Connon, Deanovic et al. 2011), so genes 
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that were differentially expressed following exposure to ambient water from Hood in this study, 

were sequenced at the CA&ES Genomic Facility, UC Davis. Sequences were annotated 

according to homologies to protein database searches using translated nucleotide sequences and 

direct nucleotide queries (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences were only annotated 

if they were found to have a BLASTx match with the expected value smaller than 1x10
-5

 and a 

score above 30, and each annotation was individually checked for homology. Differentially 

expressed genes were functionally classified according to the Kyoto Encyclopedia of Genes and 

genomes (KEGG - http://www.genome.jp/kegg/kegg2.html) into functional groups. Additional 

information was gathered from literature and the Gene Ontology Database (GO - 

http://www.uniprot.org/uniprot) to aid classification.  

Quantitative polymerase chain reaction (PCR) assessments 

Specific genes of interest identified through microarray assessments in this study, as well as  

previous studies conducted on delta smelt (Connon, Geist et al. 2009; Connon, Beggel et al. 

2011; Connon, Deanovic et al. 2011) were selected (Table 1) to conduct comparative 

quantitative PCR (qPCR) studies amongst Hood, SRWTP effluent, SRGB plus ammonia, SRGB 

controls and UCD-FCCL controls.  A total of 12 fish per treatment; three from each replicate, 

were assessed by qPCR. All RNA extractions were performed as indicated above. 

Complementary DNA (cDNA) was synthesized using 2 μg total RNA, with 50 units of 

Superscript III (Superscript III Reverse Transcriptase, Invitrogen, Carlsbad, CA, USA), 600 ng 

random primers, 10 units of RNaseOut, and 1 mM dNTPs (Invitrogen) to a final volume of 20 

μL. Reactions were incubated for 50 min at 50 °C followed by a 5 min denaturation step at 95 

°C. Samples were diluted with the addition of 130 μL nuclease-free water to a total volume of 

150 μL for subsequent real-time PCR assessments. Primers and probes for qPCR analyses were 

designed using Roche Universal Probe Library Assay Design Center (https://www.roche-

applied-science.com). Primers were obtained from Eurofins MWG Operon 

(http://www.eurofinsdna.com), and TaqMan probes were supplied by Roche or Applied 

Biosystems (Table 1). The assessed efficiency of the primer-probe systems ranged between 91 

and 109%. TaqMan Universal PCR Mastermix (Applied Biosystems) was used in qPCR 

amplifications. SDS 2.2.1 software (Applied Biosystems) was applied to quantify transcription 

and qPCR data was analyzed using the (Log2
-ΔΔCt

) method (Livak and Schmittgen 2001).  

Differences in transcription were calculated relative to Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH); identified using GeNorm (Vandesompele, De Preter et al. 2002) as a 

suitable reference gene for this assessment. Data were assessed separately for Hood and SWRTP 
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tests, relative to respective controls. Statistical significance was tested using Shapiro Wilk 

normality test on Log2
(-ΔΔCt)

 data, followed by Mann Whitney U test to test for significant 

differences in fold-change. The full suite of gene responses, combining data from Hood, and 

SRWTP and SRGB tests, and respective controls, were then subjected to principal component 

analysis (PCA) using Genesis software version 1.7.5 36 (Sturn, Quackenbush et al. 2002) on 

delta Ct data relative to GAPDH Log2
(ΔCt)

 to assess genomic profiling similarities between 

samples. 

 

Results 

 
Water physicochemistry  

Water physicochemical parameters (EC, pH, temperature, DO, and turbidity) remained stable 

throughout the test and there were no significant differences between treatment groups (Table 2). 

Nominal total ammonium concentration spiked into SRGB water samples were consistent with 

measured concentrations. Total ammonium concentrations at Hood, SRGB and laboratory 

control samples were below the estimated limit of uncertainty of the Hach (Loveland, CO) 

AmVer Ammonia Test‟N Tube Reagent Set (0.7 mg/L) used and are thus not comparable. 

 

Mortality 

Delta smelt mortality after 7-d exposure to water samples from the Sacramento River at Hood 

was 44.7%, significantly exceeding the mortality in the controls of 14.8% (p < 0.01). The control 

treatment included a low EC (179 µS
.
cm

-1
) and low turbidity (5 NTU) adjusted water, these two 

parameters combined, though predominantly the low EC, may have contributed to the mortality 

observed, since no mortality was recorded for those fish maintained in non-adjusted culture 

water from UCD-FCCL (1167 µS
.
cm

-1
 and 11 NTU). There were no significant differences in 

mortality amongst SRGB (26.5%), SRGB plus 2 mg/L total ammonium (26.1%), and 9% 

SRWTP effluent (25%). 

 

Microarray assessment (Hood field station) 

Microarray analysis of delta smelt larvae exposed to ambient water collected from Hood 

identified 103 genes responding significantly to the treatment (cut-off p < 0.05). Eighty eight 

genes were down-regulated and only 15 were up-regulated. A total of 94 genes were assigned to 

a function/pathway, whereas 9 genes remained unknown. The differentially transcribed genes, 
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annotation and functional classifications are presented in Table 3, and supplementary 

information (Table S1). 

Metabolic pathways responsible for pancreatic secretion, protein digestion and absorption, fatty 

acid metabolism, pentose phosphate pathways, glycolysis and gluconeogenesis, as well as the 

starch and sucrose pathway, were affected by exposure. Genes involved in these metabolic 

pathways included, among others, intestinal fatty acid binding protein 2b (FABP2), 

carboxypeptidase b (CPB1) and aminopeptidase N (ANPEP), a gene coding for an enzyme that 

acts as a catalyst in the amino acid cleavage reaction of protein or peptide substrates (Taylor 

1993). Energy supply pathways were affected along with metabolism, as indicated by the down 

regulated transcription of genes such as vacuolar proton pump subunit H (ATPeV54kD), which 

is involved in the oxidative phosphorylation pathway (Saraste 1999).  

Altered transcription of genes assigned to genetic information processing is likely an 

indication of effects on protein biosynthesis, in particular transcription and translation. The 

messenger RNA surveillance pathway was potentially affected by exposure, as indicated by the 

down-regulation of Eukaryotic peptide chain release factor subunit 1 (eRF-1), along with a 

down-regulation of 60S ribosomal export protein (NMD3). Up-regulation of Nei endonuclease 

VIII-like 1 (NeiL1) is indicative of base excision repair induction, suggesting oxidative DNA 

damage resulting from exposure (Bandaru, Sunkara et al. 2002; Dou, Mitra et al. 2003; 

Vartanian, Lowell et al. 2006; Das, Boldogh et al. 2007).  

Effects on the immune system were also highlighted through the microarray assessments. 

Pathways associated with biological defense were affected, in particular with antigen processing 

and presentation, complement activation and intestinal immune network for immunoglobin A 

(IgA) production. Genes such as Major Histocompatibility Complex 2 (MHC2), Beta-2-

Microglobulin (B2M), Complement factor BF-2 (BF-2) and Complement regulatory protein 

(CRRY), are associated with the immune system and were significantly down-regulated on 

exposure (Braciale, Morrison et al. 1987; Germain and Margulies 1993; Xie, Wang et al. 2003; 

Kim and Song 2006; Zipfel and Skerka 2009).  

Neuromuscular system effects were also apparent as indicated by Tubulin Cofactor Beta 

(TBCB) (Grynberg, Jaroszewski et al. 2003; Lopez-Fanarraga, Carranza et al. 2007); implicated 

in nerve development and cell differentiation, and Taxilin beta-like (TXLNB); a gene promoting 

motor nerve regeneration(Itoh, Fujimori et al. 2005), both of which were down-regulated. 

Interestingly, Atrogin-1 (MAFbx32), which is known to be highly expressed during muscle 

atrophy (Gomes, Lecker et al. 2001), was significantly up-regulated following exposure. 

Furthermore, Transgelin (TAGLN) a gene responsible for muscle development was down-
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regulated, along with Troponin 1 (TNN1), a muscle filament involved in regulation of striated 

muscle contraction, through alpha-actin, and tropomyosin binding(Assinder, Stanton et al. 2009; 

Lehman, Galińska-Rakoczy et al. 2009). Both Alpha-Actin (ACTA) and Tropomyosin were also 

affected by exposure, up and down-regulated respectively. Parvalbumin Typ 1 (PvalbT1), 

involved in muscle relaxation after contraction and calcium ion binding, was significantly up-

regulated, along with Calmodulin 2 (CAM2) (Celio and Heizmann 1982; Heizmann 1984; Chin 

and Means 2000). Ictacalcin (ICN) also involved in calcium ion binding and calcium 

homeostasis was significantly down-regulated (Porta, Bettini et al. 1996). 

Genes associated with bone structure and development, were also influenced by 

exposure, as suggested by the down-regulation of Collagen Type XI (ColXI) and secreted 

protein, acidic, cysteine-rich (osteonectin) (SPARC), both of which are involved in collagen 

binding in vertebral development and ossification (Delany and Hankenson 2009; Wargelius, 

Fjelldal et al. 2010).  

 

Comparative qPCR (Field station, upstream and effluent samples) 

A set of 22 genes identified as indicated above, were used for comparative qPCR studies 

amongst Hood, SRWTP effluent, SRGB plus ammonium, and respective controls (Figure 1a and 

b). The response profile relative to controls, between the 9% effluent, 2 mg/L ammonium spiked 

SRGB water, and Hood are comparable.  Of significance is down-regulation of Collagen XI 

(ColX1) which, regardless of ammonium concentration, responded similarly to effluent and 

ammonia spiked SRGB water. The majority of the assessed genes that responded significantly (p 

< 0.05); 14 of 22, corresponded to microarray data in their up or down regulation. Creatine 

kinase (CK) and sarcoendoplasmic reticulum calcium ATPase (SERCA), genes involved in 

muscular activity, were significantly down-regulated (p < 0.01) on exposure to Hood while 

aspartoacylase (ASPA) a gene associated in nerve signaling, was significantly down-regulated (p 

< 0.05) on exposure to Hood, but up-regulated on exposure to ammonium spiked SRGB water (p 

< 0.05) and 9% effluent (p < 0.01).  

Correlating transcriptional responses resulting from each treatment, by means of PCA, 

highlights the similarity of responses between Hood, SRWTP effluent and ammonium spiked 

SRGB water (Figure 2), differentiating significantly (p < 0.05) to the respective SRGB and 

laboratory controls. Furthermore, the laboratory control differs significantly (p < 0.05) from the 

SRGB control,  
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Discussion 
 

This study utilized a transcriptional profiling approach to assess and monitor the impacts of 

contaminants in the environment. As demonstrated in the current study, the use of transcription 

profiling to assess the impact of complex mixtures will unlikely identify specific contaminants 

responsible for toxicity, especially without integration of toxicity identification and evaluation 

(TIE), but it does show promise towards the identification of contaminant sources.  

Increased mortality following exposure to water from the Sacramento River at Hood 

could not be attributed to the physicochemical parameters of this site, when compared to the 

matching conductivity and turbidity controls, implying that other stressors, potentially 

contaminants, were responsible for the observed mortality. These contaminant impacts are 

highlighted in the microarray assessment, identifying effects on important molecular pathways in 

delta smelt exposed to water collected from the Hood field station.  

One of the most characterized molecular pathways is that of PPAR metabolic regulation, 

a pathway of nuclear receptors that function as transcription factors that regulate gene 

expression, playing an essential role in numerous diverse physiological process including cell 

differentiation, development, metabolism of carbohydrates, lipids and proteins, and is activated 

by signals that control energy and nutrient homeostasis (Mandard, Müller et al. 2004; Puigserver 

2005). The PPARs are master regulators of suites of other genes, thus it is high likely that 

changes in their transcriptional activity could have big effects on their numerous target genes. A 

key factor at the starting point of the PPAR signaling pathway, by which all three known PPA 

receptors, PPARα, PPARβ/δ, and PPARγ (Michalik, Auwerx et al. 2006) are affected, is the 

Intestinal FABP2; involved in fat digestion and absorption (Kaikaus, Bass et al. 1990). Potential 

adverse effects on digestion are conditioned by effects on energy supply may be translated into 

impaired growth, reduced fitness, significant malnutrition and starvation. Furthermore, dietary 

protein deficiencies have been reported to affect the immune system and increase susceptibility 

to contaminants (Banerjee 1999). Furthermore the PPAR signaling pathway reportedly a target 

of endocrine disruption, and plays an important role in fatty acid metabolism (Casals-Casas, 

Feige et al. 2008). 

There are further indications that exposure may have adversely affected energy and 

metabolism, as indicated by the down-regulation of ATPeF0E and ATPeV54kD, which function 

as proton pumps in the oxidative phosphorylation pathway (Saraste 1999). Closely linked with 

the effects on metabolism is the production of reactive oxygen species, which can potentially 

evoke DNA damage (TPA Devasagayam and Saroj S Ghaskadbi 2004). In a healthy organism, 
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the generation of pro-oxidants in the form of reactive oxygen species is effectively kept in check 

by the various levels of antioxidant defense. However, following exposure to adverse 

physicochemical, environmental or pathological agents, this delicately maintained balance is 

shifted in favor of pro-oxidants resulting in „oxidative stress‟ (TPA Devasagayam and Saroj S 

Ghaskadbi 2004), further potentiating the toxicity of contaminants (Banerjee 1999).  

NeiL1, which is involved in base excision and repair in DNA bubble formation during 

replication (Dou, Mitra et al. 2003; Hu, de Souza-Pinto et al. 2005; Das, Boldogh et al. 2007), 

was up-regulated on exposure. This increase in transcription could potentially indicate that 

genetic information processing is adversely affected. The base excision repair aspect is not the 

only indicator of potential effects on genetic information processing. The altered transcription of 

eRF-1 and NMD3, involved in the mRNA surveillance pathway, and RNA transport (Czaplinski, 

Ruiz-Echevarria et al. 1998; Kashima, Yamashita et al. 2006), also contributes to this hypothesis. 

Effects on these pathways may indicate changes in protein biosynthesis, in particular 

transcription, translation, and RNA degradation and can lead to metabolic impairments. 

  

Effects on development were also highlighted in this study. Down-regulation of collagen 

XI has been associated with vertebral deformities, specifically in the development of vertebral 

compact bone (Wargelius, Fjelldal et al. 2010). Bone structure might also be negatively affected 

by the down-regulation of SPARC/Osteonectin BM-40. Studies on bone structure have revealed 

decreased numbers of osteoblasts and osteoclasts, as well as decreased bone-formation rate and a 

loss of osteonectin in SPARC-Null mice (Delany and Hankenson 2009), and an increased 

collagen maturity (Boskey, Moore et al. 2003). These findings indicate potential effects on bone 

formation and bone remodeling, and impaired bone structure accompanying a lack of 

SPARC/Osteonectin BM-40 in the delta smelt. Further a lack of SPARC/Osteonectin BM-40 

was shown to have adverse effects on wound healing in mice (Basu, Kligman et al. 2001), 

suggesting that similar effects may impact on exposed delta smelt.  

  Effects upon muscle function may be indicative of subsequent effects on swimming 

performance. Tropomyosin is involved in muscle contraction, interacting with calcium and 

binding to actin filaments during the contraction cycle. Accumulation of calcium in muscular 

tissue contributes to muscle degradation, muscular dystrophy and muscle fiber necrosis (Olive, 

Rivera et al. 1994). Elevated Ca
2+

- level in the muscle cells are likely indicated by changes in 

calmodulin and parvalbumin regulation, since calmodulin is a Ca
2+

-binding protein (Chin and 

Means 2000) and parvalbumin is involved in the removal of calcium from myofibrils, and 

facilitation of muscle relaxation (Rewal, Wen et al. 2005), and is localized in fast contracting 
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muscles (Freund 1989). Along with likely muscular atrophy, as suggested by the up-regulation of 

the ubiquitin mediated Atrogin-1 (MAFbx), it is highly indicative that these effects would impact 

on both muscle development and function. 

Microarray analysis also pointed to potential effects on immune system. The major 

histocombatibility complex class II (MHCII) and β-microglobulin (B2M) proteins play important 

roles in antigen processing and presentation pathway. MHCII occurs in macrophages, where it is 

also referred to as antigen presenting cells, and in B cells. It is directly linked with the T cell 

receptor signaling pathway (Markmann, Lo et al. 1988; Cresswell 1994), which in turn controls 

the cytokine production and the activation of other immune cells. B2M is a small protein 

normally found on the surface of many cells, including lymphocytes and is known to be involved 

in cell protection (Tanaka, Ebata et al. 2005). Catabolism of B2M takes place almost exclusively 

in the kidney and its excretion is an indication of long term nephrotoxicity (Sørensen, Nissen et 

al. 1985). Reduced transcription levels of B2M are known to compromise the immune system 

(Tay, Welsh et al. 1995). B2M was observed to be down-regulated in microarray and qPCR data, 

although not to statistical significance. An important aspect of the immune defense of an 

organism is the complement cascade. The complement factor BF-2 and CRRY contribute 

significantly to the complement cascade and influence the C3 convertase (Ponnuraj, Xu et al. 

2004; Milder, Gomes et al. 2007) which is a central step in this system (Sarma and Ward 2011). 

Complement factor BF-2 is a serine protease, which activates the C3 convertase (Ponnuraj, Xu et 

al. 2004; Milder, Gomes et al. 2007), while CRRY reduces the C3/C5 convertase activity, via 

decay accelerating factor (DAF) and membrane cofactor protein (MCP), mediate cell lysis 

(Nangaku, Quigg et al. 1997). Furthermore several functions such as cell lysis, chemotaxis, 

phagocyte recruitment, inflammation and B-cell receptor signaling pathway are associated with 

BF-2 (Walport 2001; Carroll 2004).  

It has previously been demonstrated that contaminants alone can have severe impacts on 

the immune system (Clifford, Eder et al. 2005), and can function as predisposing factors, which 

accompanied with low levels of pathogen infections, can lead to high mortalities. The measured 

immune system responses could be resultant of synergistic effects of contaminants with 

undetermined pathogens. Fish in the present study were treated with antibiotics, which should 

reduce the risk of infection, though possible infections arising from exposure to ambient water 

samples should not be ruled out entirely.  

A number of contaminants, including pyrethroids, heavy metals and fluoranthenes, have 

previously been detected at the Hood site (Werner, Deanovic et al. 2010). Several sources of 

agricultural and urban contaminants originate upstream from the site. Effluent discharge from the 
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Sacramento Regional Wastewater Treatment Plant (SRWTP) is one of the largest known sources 

of ammonium to the lower Sacramento River. Inflow from the American River, has been 

reported to carry a number of pesticides such as bifenthrin, which is heavily applied for land use 

control in urban areas of Sacramento (Weston, Holmes et al. 2009; Weston and Lydy 2010), and 

upstream of the confluence with the American River, there are vast agricultural regions that also 

contribute pollutants to the Sacramento River. 

Transcriptional differences were significant between delta smelt exposed to Hood and 

upstream at SRGB, however, both the addition of 95% SRWTP effluent to water from SRGB as 

well as the addition of ammonium to the SRGB resulted in significant similarities to Hood. 

These responses suggest that ammonium originating from the wastewater treatment has a 

significant impact on the delta smelt. Ammonium concentrations at Hood were low, and the 

upregulation of the ammonium transporter gene on fish exposed to Hood was non-significant, 

corroborating this and suggesting that other contaminants may be responsible for the observed 

transcriptional differences. 

We have previously reported that ammonium affects cell membrane permeability 

(Connon, Deanovic et al. 2011), potentially enhancing the uptake and effects of multiple-

contaminant exposure. It is therefore debatable that effects of contaminants present upstream 

(SRGB site) may be enhanced by the addition of ammonia, and that SRWTP effluent contributes 

further contaminants to the Sacramento River, but that this discharge is not solely responsible for 

the resulting mortality at Hood. In fact, PCA supports this hypothesis through the clustering of 

Hood with SRWTP effluent and ammonium spiked SRGB samples (Figure 2), and the 

significant differentiation between transcriptional responses in SRGB exposed fish to those from 

the laboratory control. 

The findings of this investigation indicate that contaminants originating upstream of 

Hood are a potential cause for delta smelt growth and development abnormalities, leading to the 

recorded mortality. We have measured transcription indicators of impacts on the energy 

metabolism, DNA and RNA processing, development of bone and muscle and on the immune 

system. Previous studies have indicated the presence of numerous contaminants at this site that 

arise from anthropogenic activities (Werner, Deanovic et al. 2010) but further investigations 

upstream from Hood and SRGB are required to determine the source and classes of contaminants 

in the Sacramento River, and these investigations should include broad-scale chemical analyses. 

Although SRWTP effluent discharge is reportedly a major source of contaminants, urban and 

agricultural activities throughout the area, and upstream of the tested sites, are likely to 
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contribute to the complex mixture of compounds adversely affecting the delta smelt habitat and 

population dynamics. 

This study has highlighted how transcriptomic assessments can successfully be utilized to 

investigate not only the effects of complex contaminant mixtures, within ambient water samples, 

but also demonstrated the use of these techniques towards the identification of contaminant 

sources. This enhances the potential of future applications of transcriptomic techniques in 

complement with existing TIE approaches, aiding the determination of contaminants, or 

contaminant classes responsible for toxicity. 
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Tables and Figures. 

 

Table 1. Primers and probes used for quantitative PCR assessments of gene transcription in delta 

smelt (Hypomesus transpacificus). 

Gene Name Gene Code Primer 5’3’ Primer 3’5’ 

Roche 

Probe 

No. # 

Alpha Actin a-actin cctgcctcgtcgtactcctg catcctggcttccctgtcc 11 

Adenylate Kinase Adk ctgtcttctggggacctgttg   ctcctttctgcataattgcctgt 36 

Amylase Amy gatcaccatgttcttgatctgacg ccatcaatcctgaccaaacctg 99 

Aspartoacylase Aspa cagagccttcacgacagaaa tgaacctcatagggcaggtc 22 

Fbxo32 (Atrogin) Atrogin ggaagcaccaaagagcgtca ggcgctgcagaaatccaa 7 

Calmodulin Calm2 ttccttattcgacatggatggc   gcagacccagtgactgcatg 17 

Caspase 3 Casp3 gagaaccggtatgaaccaacg tccaagcttcccaaacactttc 159 

Creatine Kinase CK cgatcggcgttggagatg gccaagttcaacgagattctgg 163 

Collagen XI ColXI ccaaaatcgatcaggttccaat tggttggcatccccaaag # 

Estrogen Receptor 1 ESR1 tccaggagctgtctctccat gagaccgatcatgagcacct 72 

Keratin 15 Krt15 ccagcaaaaccagttactcctcc   cctgatgagcctccatacctca 38 

Myosin Light Chain 2 Mlc2 catgggagaccgcttcacc   tgtcgatgggagcttcacg 10 

Ammonium transporter NH4 transp caggctgtcttatcgcttacgg cagcgtcatgactaacagctgaa  61 

Pregnane X Receptor PXR tgaggcggtggagaagag gaggcggtggagaagag 144 

Sarcoendoplasmic Reticulum –

Calcium ATPase 
SERCa catgatcattgggggagca tgctgtgatgacaacgaggac 148 

Tubulin Cofactor Beta Tbcb gactcctgcagctggtatgga   ccagcttctgcaggaacttgtc 78 

Transforming Growth Factor beta TGF-b caacggcatagtgcatgtgg gaatgtgtgcacgttgttggt 76 

Thyroid Hormone Receptor alpha THR-a gcgtggacaagatcgagaag tgtgcttgcggtagttgatg 62 

Transmembrane protein 4 sub-

family 4 
Tms4sf4 ccctggctctcatctccatc   ccatctttggcatacttcacc 64 

Tumor Necrosis factor alpha TNF-a ctttttccgctgttccatgttc gttaccagcatacgcagtgtcc 2 

Tropomyosin Tpm tcccttaacagacgcatccag cagtagccagacgctcctgtg 101 

Zona Pellucida Zpa catgcggctgagtttggataa tgccattgatagcatcaacttca 106 

Glyceraldehyde 3-phosphate 

dehydrogenase* 
GAPDH tccacgagaaagacccaact cacgccagtagactcaacca 159 

# Custom design (FAM-caacgtcatggtcaatg-BHQ Applied Biosystems), *reference gene. 
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Table 2. Physicochemical water parameters determined during the tests. Values represent mean 

and standard deviations (SD) over the 7 d test period.  

 Control Hood SRGB 
SRGB plus  

2 mg/L NH4-N 
SRWTP  

9% effluent 

Parameter Mean SD Mean SD Mean SD Mean SD Mean SD 

Temperature °C 17.0 1.2 16.9 1.2 16.9 0.2 17.0 0.3 16.9 0.4 

EC (µS/cm) (20°C 

adjustment) 
179 36 150 30 172 59 221 59 219 60 

DO (mg/l) 9.6 0.2 9.8 0.2 9.6 0.2 9.5 0.3 9.6 0.3 

pH 7.95 0.14 7.97 0.06 7.89 0.10 7.83 0.08 7.83 0.12 

Turbidity (NTU) 7 1 5 4 7 5 6 5 6 5 

Measured Ammonia 

Nitrogen (mg/L) 
-  -  -  1.90 0.24 1.96 0.16 

Unionized Ammonia 

(mg/L) 
-  -  -  0.038 0.007 0.039 0.010 

SRGB: Sacramento River at Garcia Bend, SRWTP: Sacramento Regional Wastewater Treatment 

Plant, EC: Electric Conductivity, DO: Dissolved Oxygen, NTU: Nephelometric Turbidity Units. 

“-”: Below estimated limit of uncertainty. 
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Table 3.  Microarray assessment and functional classification of delta smelt (Hypomesus 

transpacificus) genes responding to Sacramento River water from Hood, as determined by Kyoto 

Encyclopedia for Genes and Genomes (KEGG) pathway analysis.  

 
Functional Category Upregulated Transcripts Downregulated Transcripts 

1 Metabolism   
1.1 Carbohydrate Metabolism   

Pentose Phosphate Pathway [PATH:ko00030]  TALDO1, PRPS, PGI 
Glycolysis Glyconeogenesis [PATH:ko00010]  PGI 
Starch and sucrose Pathway [PATH:ko00500]  PGI 
Amino sugar and nucleotide Metabolism [PATH:ko00520]  CYB5R3, PGI 

1.2 Energy Metabolism  SQRDL * 
Oxidative Phosphorylation [PATH:ko00190]  ATPeF0E, ATPeV54kD 

1.3 Lipid Metabolism   
Arachidonic acid Metabolism [PATH:ko00590]  PTGES 
Sphingolipid Metabolism [PATH:ko00600]  ASAH1 
Glycerophospholipid metabolism [PATH:ko00564]  PCYT2 

1.4 Nucleotide Metabolism   
Purine Metabolism [PATH:ko00230]  PRPS 

1.5 Aminoacid Metabolism   
Tryptophan Metabolism [PATH:ko00380]  TPH 
Glycine, Serine and Threonin Metabolism [PATH:ko00260] GATM Setd8b, GAMT,GNMT 
Arginine and Proline Metabolism [PATH:ko00330] GATM GAMT 

1.6 Metabolism of Other Amino Acids   
Glutathione Metabolism [PATH:ko00480]  ANPEP 
Phosphonate and phosphinate metabolism [PATH:ko00440]  PCYT2 

1.7 Metabolism of Cofactors & Vitamins   
Porphyrin and chlorophyll metabolism [PATH:ko00860]  FTH1, FTL 

1.8 Enzyme Families   
Peptidases  NPEPL1 

2 Genetic Information Processing   
2.1 Transcription   

Spliceosome [PATH:ko03040]  HSPA1_8, BUD31 
Transcription factors [BR:ko03000]  CEBPD 

2.2 Translation   
mRNA surveillance pathway [PATH:ko03015]  eRF-1 
RNA transport [PATH:ko03013]  NMD3 
Ribosome biogenesis in eukaryotes [PATH:ko03008]  NMD3, NOB1, WDR43, HSR1 
Translation factors [BR:ko03012]  eEF-2 

2.3 Folding Sorting and Degradation   
Proteasome [PATH:ko003050] PSMC4 PSMA3, PSMB4, PSME3 
Protein Processing in endoplasmic reticulum [PATH:ko04141]  HSPA1_8, SAR1, UBE2G1, TBCB 
Ubiquitin mediated proteolysis [PATH:ko04120]  UBE2G1, UBE2L3 
SNARE interactions in vesicular transport [PATH:ko04130]  SNAP29 
Ubiquitin system [BR:ko04121] ZFAND2B, FBXO32 MAFbx KLHL31 
Chaperones and folding catalysts [BR:ko03110]  CCT5, CCT8, DNAJC7, TXNIP 

2.4 Replication and Repair   
Base excision repair [PATH:ko03410] NeiL1  
DNA repair and recombination proteins [BR:ko03400] UBE2V  
Chromosome [BR:ko03036]  H1_5 

3 Environmental Information Processing   
3.1 Signal Transduction  EMP55*, LRG1 * 

MAPK signaling Pathway [PATH:ko04010]  HSPA1_8, RAP1B 
Phosphatidylinositol signaling system [PATH:mcc04070] CaM2  
Calcium signaling pathway [PATH:mcc04020] CaM2  
Calcium ion binding * PvalbT1 * PvalbT2 *, PvalbT3 *, EPD-1 *, ICN *, SPARC * 
Wnt-signaling Pathway [PATH:ko04310]  RHOA 
TGF-beta signaling Pathway [PATH:ko04350]  RHOA 

3.2 Signal Molecules and Interactions   
Cell adhesion molecules (CAMs) [PATH:ko04514]  MHC2, CNTN1 
GTP-binding proteins [BR:ko04031]  RAB27A 

Protein binding *  
IST1 *, BSDC1 *, FAHD1 *, HIGD1A *, LCN1 *, 

SDS22 *, ATG101 *, EMP55* 

4 Cellular Processes   
4.1 Transport and Catabolism   

Lysosome [PATH:ko04142] CTSD ASAH1, ATPeV54kD 
Endocytosis [PATH:ko04144]  HSPA1_8, RHOA, VPS28, VPS4 
Phagosome [PATH:ko04145]  MHC2, ATPeV54kD 
Peroxisome [PATH:ko04146]  PXMP2 
Regulation of autophagy [PATH:ko04140]  GABARAP, ATG101* 

4.2 Cell Motility   
Regulation of actin cytoskeleton [PATH:ko04810]  RHOA, TNNI1 * 
Cytoskeleton proteins [BR:ko04812]  MLC1, Krt4, TNNI1, TNNI2 
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Muscle Atrophy * FBXO25_32 MAFbx32 *  
Cell matrix adhesion and Matrix structural constituent *  EPD-1 *, ColXI * 

4.3 Cell Growth and Death   
Oocyte meiosis [PATH:mcc04114] CaM2  
Apoptosis *  MLC1 *, CHAC1, NUPR1 * 
cell cycle, cell division *  IST1 *, TXNIP *, WDR82 * 

4.3 Cell Communication   
Focal adhesion [PATH:ko04510]  RHOA, RAP1B 
Adherens junction [PATH:ko04520]  RHOA 
Tight junction [PATH:ko04530]  RHOA 

5 Organismal Systems   
5.1 Immune System  BF-2 * 

Hematopoietic Cell Lineage [PATH:ko04640]  ANPEP 
Antigen processing and presentation [PATH:ko04612]  PSME3, MHC2, HSPA1_8, B2M 
T cell receptor signaling pathway [PATH:ko04660] UBE2V * RHOA, HSR1 *, RAB27A *, TXNIP * 
Chemokine signaling pathway [PATH:ko04062]  RHOA, RAP1B 
Leukocyte transendothelial migration [PATH:ko04670]  RHOA, RAP1B 
Intestinal immune network for IgA production [PATH:ko04672]  MHC2 
Complement  and coagulation cascades   CRRY 

5.2 Endocrine System   
Renin-Angiotensin System [PATH:ko04614]  ANPEP, THOP1 
PPAR signaling pathway [PATH:ko03320] FABP2 UCP1 
Insulin signaling pathway [PATH:mcc04910] CaM2  
GnRH signaling pathway [PATH:mcc04912] CaM2  
Melanogenesis [PATH:mcc04916] CaM2  

5.3 Circulatory System   
Vascular smooth muscle contraction [PATH:ko04270] CaM2 RHOA 
Cardiac muscle contraction [PATH:ko04260] ActA TNNI1, Tpm 
Relaxation after contraction * PvalbT1 * PvalbT2 *, PvalbT3 * 
calcium homeostasis *  ICN * 

5.4 Digestive System   
Pancreatic secretion [PATH:ko04972]  RHOA, RAP1B, CPB1 
Salivary secretion [PATH:mcc04970] CaM2  
Gastric acid secretion [PATH:mcc04971] CaM2  
Fat digestion and absorption [PATH:ko04975] FABP2  
Protein digestion and absorption [PATH:ko04974]  CPB1 
Proteolysis *  BF-2 *, LCN1 * 

5.5 Nervous System   
Neurotrophin signaling pathway [PATH:ko04722] CaM2 RHOA, RAP1B 
Long-term potentiation [PATH:ko04720] CaM2 RAP1B 
Axon guidance [PATH:ko04360]  RHOA, CNTN1*, St8sia4* 

5.6 Sensory System   
Phototransduction [PATH:mcc04744] CaM2 ARRDC2 
Olfactory transduction [PATH:mcc04740] CaM2  
Sensory perception of taste *  LCN1 * 

5.7 Development   
Cell differentiation *  MLC1 *, Tbcb * 
Ossification, Collagen binding *  SPARC * 
Muscle organ -, Nervous system development *  TAGLN *, Tbcb *, TXLNB* 

5.8 Environmental Adaptation   
Stress response, heat response *  HSPB8*, HIGD1A * 
Response to oxidative stress NeiL1  
Facilitate necrotic cell death under different types of stress*  HEBP2 * 

6 Not Assigned   

 CG057 , apo14kDa , SLC6A9 
FUNDC1 , TNNT3B, apo14kDa, GATLS1, 

NAT8L, TMEM106B, PWP1 

* Denotes genes for which no KEGG pathways were identified, and where functional categories were attributed from KEGG Brite functional 

hierarchies, gene ontology and related litertature. Abbreviations; Gene names:  ActA: Alpha Actin; ANPEP: Aminopeptidase N; Apo14kDa: 14kDa Apolipoprotein; 

Arrdc2: Arrestin domain-containing protein 2; ASAH1: N-acylsphingosine amidohydrolase; ATG101: Autophagy-related protein 101; ATPeF0E: ATP synthase e chain, mitochondrial; 

ATPeV54kD: Vacuolar proton pump subunit H; B2M: Beta-2 microglobulin; BF-2: Complement factor Bf-2; BSDC1: BSD domain containing 1; BUD31: BUD31 homolog; CaM2: 

Calmodulin-2; CCT5: T-complex protein 1 subunit epsilon; CCT8: T-complex protein 1 subunit theta; CEBPD: CCAAT/enhancer-binding protein delta; CG057: CG057 protein; CHAC1: 

Cation transport regulator-like protein 1; CNTN1: Contactin 1a precursor; ColXI: Collagen type XI alpha1 short isoform; CPB1: Carboxypeptidase B; CRRY: Complement regulatory protein 

CTSD: Cathepsin D; CYB5R3: NADH-cytochrome b5 reductase; DNAJC7: DnaJ homolog subfamily C member 7; eEF-2: Elongation factor 2; EMP55: 55 kDa Erythrocyte membrane protein; 

EPD-1: Ependymin-1; eRF-1: Eukaryotic peptide chain release factor subunit 1; FABP2: Intestinal fatty acid binding protein 2b; FAHD1: Fumarylacetoacetate hydrolase domain-containing 

protein 1; MAFbx32 :  F-box only protein 32 Muscle atrophy F-box protein, Atrogin1; FTH1: Ferritin, heavy subunit; FTL: Ferritin, middle subunit; FUNDC1: FUN14 domain-containing 

protein 1; GABARAP: Gamma-aminobutyric acid receptor-associated protein-like 1; GAMT: Guanidinoacetate N-methyltransferase; GATM: Glycine amidinotransferase, mitochondrial; 

GATSL1: GATS-like protein 1; GNMT: Glycine N-methyltransferase; GPI: Phosphoglucose isomerase-2; H1_5: H1 histone family, member 0; HEBP2: Heme-binding protein 2; HIGD1A: 

HIG1 domain family member 1A; HSPA1_8: Heat shock cognate 71 kDa protein; HSPB8: Heat shock 22kDa protein 8; HSR1: GTP-binding protein HSR1; ICN: Ictacalcin; IST1: KIAA0174-

like protein, IST-homolog1; KLHL31: Kelch-like protein 31; KRT4: Krt4 protein; LCN1: Lipocalin precursor; LRG1: Leucine-rich alpha-2-glycoprotein; MCL1: Myeloid leukemia 

differentiation protein homologue; MHC2: Major histocompatibility complex 2; NAT8L: N-acetyltransferase 8-like protein; NEIL1: Nei endonuclease VIII-like 1; NMD3: 60S Ribosomal 

export protein NMD3; NOB1: RNA-binding protein NOB1; NPEPL1: Aminopeptidase-like 1;  NUPR1: Nuclear protein 1; PCYT2: Ethanolamine-phosphate cytidylyltransferase; PRPS: 

Phosphoribosyl pyrophosphate synthetase 1A isoform 1; PSMA3: Proteasome subunit alpha type 7; PSMB4: Proteasome subunit beta type 4; PSMC4: 26S protease regulatory subunit 6B; 

PSME3: Proteasome activator complex subunit 3; PTGES: Prostaglandin E synthase 3; PvalbT1: Parvalbumin Typ1; PvalbT2: Parvalbumin Typ2; PvalbT3: Parvalbumin Typ3; PWP1: 

Periodic tryptophan protein 1 homolog; PXMP2: Epithelial membrane protein 2; RAP1B: Ras-related protein Rap-1b precursor; RAB27A: Ras-related protein Rab-27A; RHOA: Transforming 

protein RhoA precursor; SAR1: SAR1 gene homolog A; SDS22: Protein phosphatase 1 regulatory subunit 22; SLC6A9: Novel protein similar to vertebrate solute carrier family 6 

(neurotransmitter transporter, glycine); SNAP29: Synaptosomal-associated protein 29; SPARC: SPARC precursor; SQRDL: Sulfide:quinone oxidoreductase; St8sia4: Alpha-2,8-

polysialyltransferase IV; TAGLN: Transgelin; TALDO1: Transaldolase; TBCB: Tubulin folding cofactor B; THOP1: Thimet oligopeptidase; TMEM106B: Transmembrane protein 106B; 

TNNI1: Troponin1; TNNI2: Troponin, slow skeletal Muscle; TNNT3B: Troponin T3b, skeletal, fast isoform 2; TPH: Tryptophan hydroxylase; TPM: Tropomyosin; TXLNB: Taxilin-Beta-like; 

TXNIP: Thioredoxin-interacting protein; UBE2G1: Ubiquitin-conjugating enzyme E2 G1; UBE2L3: Ubiquitin-conjugating enzyme e2 l3; UBE2V: Ubiquitin-conjugating enzyme E2 variant 1; 

UCP1: Mitochondrial uncoupling protein 2; VPS28: Vacuolar protein sorting-associated protein 28 homolog; VPS4: Vacuolar protein sorting-associating protein 4B; WDR43: WD repeat-

containing protein 43; WDR82: WD repeat domain containing 82 isoform 1; ZFAND2B: AN1-type zinc finger protein 2B. 
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Figure 1. Fold-change in transcription of 22 genes that responded significantly in juvenile delta 

smelt exposed for 7 days to ambient water samples collected at (A) the lower Sacramento River 

at the Department of Water Resources Field Station Hood, (B) the Sacramento River at Garcia 

Bend (SRGB) and 9% effluent from the Sacramento Regional Wastewater Treatment Plant 

(SRWTP). *, **, and *** represent statistical significance at p < 0.05, p < 0.01 and p < 0.001 

respectively. # represents statistical significance at p < 0.05 between SRGB spiked with 2 mg/L 

total ammonium and 9% SRWTP effluent containing 2 mg/L total ammonium. a-actin: Alpha 

Actin, Adk: Adenylate Kinase, Amy: Amylase, Aspa: Aspartoacylase, Atrogin: Fbxo32 (Atrogin), 

Calm2: Calmodulin, Casp3: Caspase 3, CK: Creatine Kinase, ColXI: Collagen XI, ESR1: 

Estrogen Receptor 1, Krt15: Keratin 15, Mlc2: Myosin Light Chain 2, NH4 transp: Ammonium 

transporter, PXR: Pregnane X Receptor, SERCa: Sarcoendoplasmic Reticulum –Calcium 

ATPase, Tbcb: Tubulin Cofactor Beta, TGF-b: Transforming Growth Factor beta, THR a: 

Thyroid Hormone Receptor alpha, Tms4sf4: Transmembrane protein 4 sub-family 4, TNF-a: 

Tumor Necrosis factor alpha, Tpm: Tropomyosin, Zpa: Zona Pellucida. 

 

 

Figure 2. Principal component analysis of transcriptional responses in juveniles delta smelt 

exposed for 7 days to ambient water samples collected at the lower Sacramento River at the 

Department of Water Resources Field Station Hood, the Sacramento River at Garcia Bend 

(SRGB) and 9% effluent from the Sacramento Regional Wastewater Treatment Plant (SRWTP), 

and SRGB water spiked with 2 mg/L total ammonium, and UCD-FCCL culture water. Letters a, 

b, and c upper and lower-case represent significant differences between samples (alpha = 0.05) 

as determined by PC1 and PC2, respectively. 
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