Water quality monitoring using remote sensing

Christine M. Lee NASA Jet Propulsion Laboratory

Pratte 7 00 1 1 20 Pringansta with the

Acknowledgments

Cedric Fichot David Thompson Michelle Gierach

Susan Ustin Shruti Khanna

Sacramento

Menlo Park

Brian Downing Brian Bergamaschi Lisa Windham-Myers M. Marvin-DiPasquale

Curtiss Davis Nick Tufillaro

The Bay-Delta is a major water resource for California

Ο

Ο

Ο

Ο

Ο

Ο

42 Elevation (m) Sacramento River Nevada 39" Major freshwater resource for CA 22° -121.8° -121.6° -121.4° San Joaquin Confluence of Sacramento/San Joaquin rivers 36 River California Supplies ~9 km³ of water to CA each year 33" Supplied 1M ha of farmland + 27M people 38.2 Sacramento Bay-De Suisun Marsh River Grizzly Altered, managed, and fragile ecosystem 38° **Carquinez Strait** San Joaqui 120,000 ha of tidal marshes reclaimed for agriculture River Subsidence on levied islands Alteration of habitats, biodiversity, water quality 37.8 -122.2° -122° -121.6° -121.4° -10-3

Water depth (m)

3

Water quality monitoring matters greatly in this

Sys Drinking water

Turbidity/Suspended sediments

- Light penetration
- o Habitat quality
- o Fish behavior

Dissolved Organic Carbon

- Disinfection by-products
- Affects dissolved oxygen levels
- Linked to contaminants (e.g., methylmercury)

Chlorophyll-a (Chl-a)

- Productivity of system
- Nutrient and light availability

Submerged and Floating Aquatic Vegetation

- Often invasive species
- Impact other ecology/habitat

Ecosystem health and productivity

- > Temperature
- Salinity

But water quality monitoring is a also challenge

- > The Bay-Delta is a very heterogeneous and dynamic system (scales: meters, hours)
- Water quality monitoring network and field sampling not always spatially/temporally consistent
- Biofouling of instruments is very problematic in some areas

How remote sensing can help complement water quality monitoring approaches

Touch on three efforts

- Turbidity and Chlorophyll-a w Satellite Capabilities
- Colored Dissolved Organic Matter, Chlorophyll-a, Turbidity, and Methyl-Mercury w Airborne Capabilities
- Submerged and Floating Aquatic Vegetation w Airborne Capabilities

Airborne imaging spectroscopy

AVIRIS-ng: Airborne Visible Near-Infrared Imaging Spectrometer – next generation

PRISM: Portable Remote Imaging SpectroMeter

HyMAP: airborne hyperspectral sensor, Integrated Spectronics

Airborne imaging spectroscopy (hyperspectral)

Detailed spatial distributions of multiple water quality indicators in the Bay-Delta

- > Turbidity/Suspended sediments
- Dissolved Organic Carbon
- Chlorophyll-a (Chl-a)

Landsat-8 Operational Land Imager (OLI)

In operation since May 30, 2013

Wavelength (nm)

Portable Remote Imaging SpectroMeter

Mouroulis et al., App. Opt. (2014)

- Remote-sensing reflectance
- o Spectral range: 350-1050 nm
- Hyperspectral (246 bands)
- High signal-to-noise
- Spatial resolution up to < 1 m

RIO-SFE Project

Remote/In situ Observing - San Francisco Bay and Estuary

Results and discussions with SFE Stakeholders: November 14, 2016 Sacramento, CA

CoSiNE ecological model (Fei Chai, U. Maine)

SCHISM Semi-implicit Cross-scale Hydroscience Integrated System Model (Yi Chao, RSI) **Results** merging data and models to understand SFE

Field Observations (RTC, NRL and OSU)

Remote sensing (Curt Davis, OSU)

RIO-SFE Project

Remote/In situ Observing - San Francisco Bay and Estuary

Results and discussions with SFE Stakeholders: November 14, 2016 Sacramento, CA

CoSiNE ecological model (Fei Chai, U. Maine)

SCHISM Semi-implicit Cross-scale Hydroscience Integrated System Model (Yi Chao, RSI) **Results** merging data and models to understand SFE

Field Observations (RTC, NRL and OSU)

Remote sensing (Curt Davis, OSU)

The Drought Sacramento River Flows

SPM Maps from L-8 OLI data

October 2015 Sacramento River Flows

March 23, 2016 SPM

The Miracle in March

USGS 11342000 SACRAMENTO R A DELTA CA

Zoom period plot

Installation of barrier to mitigate salinity intrusion into Delta at Frank's Tract

Following the Franks Tract Salinity Barrier

Suisun Bay to Frank's Track Landsat 8 OLI 8 May 2015 SWIR Atmospheric Correction for highly turbid waters (Vanhellemont and Ruddick 2014) Pan Enhancement (15m)

LS-8 OLI Franks Tract Aug 12, 2015

Presence of chlorophyll mats in Franks Tract

L-8 OLI Franks Tract March 23, 2016

Portable Remote Imaging SpectroMeter

Mouroulis et al., App. Opt. (2014)

- Remote-sensing reflectance
- o Spectral range: 350-1050 nm
- Hyperspectral (246 bands)
- High signal-to-noise
- Spatial resolution up to < 1 m

Data acquisition in Suisun Marsh and Grizzly Bay

Airborne remote sensing (PRISM)

Underway water quality from small boat (*in situ probes*)

Fichot et al. (2016)

Water quality algorithm

80-95% of the water quality variability was reproduced

Fichot et al. (2016)

80-95% of the water quality variability was reproduced

Remote sensing to identify hotspots of methylmercury?

- Methylmercury is a potent toxin that bioaccumulates in the food chain
- Primarily produced in sediments by sulfate-reducing bacteria (e.g., salt marshes)
- Binds strongly to dissolved organic matter

Remote sensing to identify hotspots of methylmercury?

Monitoring of invasive submerged and floating aquatic vegetation

- Impacts sedimentation rates and reduces water flow velocity
- Associated with increased water surface temperature
- Reduces oxygen levels, can create anoxic conditions

Khanna et al 2012

Mapping changes in invasive species distribution

Biol Invasions (2012) 14:717-733 DOI 10.1007/s10530-011-0112-s

ORIGINAL PAPER

Plant community dynamics relative to the changing distribution of a highly invasive species, *Eichhornia crassipes*: a remote sensing perspective

Shruti Khanna · Maria J. Santos · Erin L. Hestir · Susan L. Ustin

Khanna et al 2012

Summary

- Remote sensing can be used to develop consistently spatial and/or temporal maps of water column properties
- Water column properties most amenable to this approach are optically active or affect water color (turbidity, chlorophyll-a, CDOM, SAVs and FAVs)
- In some cases, models can be used to infer other WQ parameters (methylmercury)
- Airborne and satellite remote sensing complementary
- Remote sensing can be another tool to complement/supplement existing water quality monitoring

Acknowledgments

Cedric Fichot David Thompson Michelle Gierach

Susan Ustin Shruti Khanna

Sacramento

Menlo Park

Brian Downing Brian Bergamaschi Lisa Windham-Myers M. Marvin-DiPasquale

Curtiss Davis Nick Tufillaro

Thank you! (contact for email list) Christine M. Lee christine.m.lee@jpl.nasa.gov

ESA Sentinel-2A and 2B

<u>Sentinel-2A:</u> launched June 23, 2015 <u>Sentinel-2B:</u> to launch end of 2016

Landsat 8 OLI Characteristics

Landsat 8 Operational	Bands	Wavelength (micrometers)	Resolution (meters)
Land Imager (OLI)	Band 1 - Coastal aerosol	0.43 - 0.45	30
Launched February 11, 2013	Band 2 - Blue	0.45 - 0.51	30
	Band 3 - Green	0.53 - 0.59	30
	Band 4 - Red	0.64 - 0.67	30
	Band 5 - Near Infrared (NIR)	0.85 - 0.88	30
	Band 6 - SWIR 1	1.57 - 1.65	30
	Band 7 - SWIR 2	2.11 - 2.29	30
	Band 8 - Panchromatic	0.50 - 0.68	15
	Band 9 - Cirrus	1.36 - 1.38	30

Landsat bands are optimized for land products and here we adapt them for coastal ocean products.

Landsat-8 OLI San Francisco Bay 8 May 2015

Atmospheric correction was done using an iterative SWIR method optimized for highly turbid waters (Vanhellmont & Ruddick, 2014). The standard open ocean OC3 chlorophyll algorithm produces anomalously high values in these turbid regions.