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Aquatic trophic interactions in the upper San Francisco Estuary are synthesized here as a
conceptual food web model, using over 35 years of scientific research, and highlighting key
uncertainties for restoration. The food web was created as part of the Delta Regional Ecosystem
Restoration Implementation Program to evaluate the benefits of restoration actions. Historic
changes to the hydrology and geomorphology of the region have decreased ecosystem resiliency.
More recently, pressures from water export, alien species introductions, and nutrient loading have
disrupted the food web and increased the vulnerability of pelagic and juvenile fishes. One of the
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key features of the contemporary food web is a decoupling of pelagic and the detrital pathways.
Low production and high mortality of phytoplankton since the 1980s have led to declines of pelagic
organisms, including zooplankton, mysids, and planktivorous fish. In contrast, detrital pathways
support abundant epibenthic invertebrates, such as amphipods and crayfish, which have become
a dominant food source for adult demersal and piscivorous fish. Fishes that are obligate to the
pelagic web will likely continue to decline, although fishes able to use the detrital pathway may be
more robust. Fishes with pelagic larvae may be vulnerable to recruitment failures if they are unable
to obtain planktonic food during the critical period of their ontological development. Options for
increasing pelagic production at large scales are limited, but may include management of clams,
nutrient ratios, and off-channel habitat subsidies. Restorations at small to intermediate scales may
produce pelagic food, but volumetric constraints will limit the extent of subsidies. Creating spatial
opportunities where pelagic and detrital food webs can re-integrate may offer some opportunities
for local recruitment, and species able to use localized detritally-based webs will benefit strongly
from such activities.

Copyright Information:

Copyright 2015 by the article author(s). This work is made available under the terms of the Creative
Commons Attribution4.0 license, http://creativecommons.org/licenses/by/4.0/

http://eprints.cdlib.org
http://eprints.cdlib.org
http://eprints.cdlib.org
http://eprints.cdlib.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


SEPTEMBER 2015

Volume 13, Issue 3 | Article 5

doi: http://dx.doi.org/10.15447/sfews.v13iss3art5 

1 Center for Watershied Sciences, University of California, Davis 
One Shields Avenue, Davis, CA 95616 USA; jrdurand@ucdavis.edu

ABSTRACT

Aquatic trophic interactions in the upper San 
Francisco Estuary are synthesized here as a con-
ceptual food web model, using over 35 years of 
scientific research, and highlighting key uncertain-
ties for restoration. The food web was created as 
part of the Delta Regional Ecosystem Restoration 
Implementation Program to evaluate the benefits of 
restoration actions. Historic changes to the hydrol-
ogy and geomorphology of the region have decreased 
ecosystem resiliency. More recently, pressures from 
water export, alien species introductions, and nutrient 
loading have disrupted the food web and increased 
the vulnerability of pelagic and juvenile fishes. One 
of the key features of the contemporary food web is a 
decoupling of pelagic and the detrital pathways. Low 
production and high mortality of phytoplankton since 
the 1980s have led to declines of pelagic organisms, 
including zooplankton, mysids, and planktivorous 
fish. In contrast, detrital pathways support abundant 
epibenthic invertebrates, such as amphipods and 
crayfish, which have become a dominant food source 
for adult demersal and piscivorous fish. Fishes that 

are obligate to the pelagic web will likely continue to 
decline, although fishes able to use the detrital path-
way may be more robust. Fishes with pelagic larvae 
may be vulnerable to recruitment failures if they are 
unable to obtain planktonic food during the critical 
period of their ontological development. Options for 
increasing pelagic production at large scales are lim-
ited, but may include management of clams, nutrient 
ratios, and off-channel habitat subsidies. Restorations 
at small to intermediate scales may produce pelagic 
food, but volumetric constraints will limit the extent 
of subsidies. Creating spatial opportunities where 
pelagic and detrital food webs can re-integrate may 
offer some opportunities for local recruitment, and 
species able to use localized detritally-based webs 
will benefit strongly from such activities. 

KEY WORDS

Sacramento–San Joaquin Delta; Suisun Bay; San 
Francisco Estuary; foodweb; pelagic; detritus; inver-
tebrates; fish; restoration; Pelagic Organism Decline

INTRODUCTION

Restoration of aquatic habitat in the upper San 
Francisco Estuary (the estuary) is being planned in 
hopes of reversing historic declines of native fish 
(Herbold et al. 2014). Much of the success of these 
projects will hinge on whether restoration can pro-
vide food and refuge across the life cycle of these 
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organisms, improving trophic interactions that are 
currently impaired. The anthropogenic degradation of 
the ecosystem of the modern estuary has proceeded 
by stages (Lund et al. 2007). In the 19th century, the 
estuary was transformed by the influx of gold min-
ing sediments, the reclamation of emergent marsh to 
agriculture, and the straightening and hardening of 
slough habitat for flood control. The resulting simpli-
fied hydrology and geomorphology benefited devel-
opment, but amounted to a loss of aquatic habitat 
and ecosystem resiliency, leading to the extinction of 
the endemic thicktail chub (Gila crassicauda) by the 
early 20th century (Miller et al. 1989). 

Many subsequent aquatic stressors have accompanied 
development of central California. The highly modi-
fied landscape of the upper estuary has less ability 
to absorb ecosystem stressors because of the loss of 
habitat heterogeneity (Moyle et al. 2010). But because 
scientific monitoring of the system did not begin 
until the 1960s, the initial and irreversible loss of 
ecosystem resilience is difficult to separate from sub-
sequent stressors that have led to sometimes puzzling 
and precipitous declines in native and introduced 
species alike. 

These declines correspond with changes in mul-
tiple environmental conditions, including droughts, 
increased water diversions, flow pattern changes, 
nitrogen inputs, pesticide use, and alien species intro-
ductions (Mount et al. 2012). Decreased food reli-
ability and quality for planktonic species have almost 
certainly resulted from a mix of recent and historic 
stressors (Meng and Orsi 1991; Orsi and Mecum 
1996; Müeller–Solger et al. 2002; Winder and Jassby 
2010). A decrease in pelagic production in the 1980s 
is ascribed to the invasion of the clam Potamocorbula 
amurensis. In the 2000s, another steep decline in 
pelagic production and fishes became known as the 
“pelagic organism decline,” (POD) and remains not 
fully explained. It includes special-status native fishes 
such as delta smelt (Hypomesus transpacificus) and 
longfin smelt (Spirinchus thaleichthys), and natural-
ized species such as striped bass (Morone saxatilis) 
and threadfin shad (Dorosoma petenense) (Sommer 
et al. 2007; Mac Nally et al. 2009). Other native and 
endemic fishes are in decline, including winter-run 

Chinook salmon (Oncorhynchus tshawytscha) and 
southern green sturgeon (Acipenser medirostris). In 
contrast, a suite of introduced centrarchid fishes have 
become abundant and may prey upon or compete 
with native fishes (Turner 1966; Grimaldo et al. 2004; 
Brown and Michniuk 2007). 

Implementation of regional restoration is expected 
to increase the capacity of the aquatic food web to 
support pelagic fishes (Herbold et al. 2014). However, 
uncertainty remains about the scale and direction of 
the response of the food web to restoration. The fol-
lowing qualitative conceptual model of the aquatic 
food web of the upper estuary, including Suisun Bay 
and the Sacramento–San Joaquin Delta (the Delta), 
was produced to assist conservation and manage-
ment decisions (Gilbert 1980; Mills et al. 1993; Polis 
et al. 1997). It synthesizes over 35 years of ecosystem 
research into the Driver–Linkage–Outcome format 
used in the Delta Regional Ecosystem Restoration 
Implementation Program (DRERIP) (DiGennaro et 
al. 2012). To manage complexity and help iso-
late uncertainties, the model has been divided into 
seven separate diagrams that emphasize: abiotic 
drivers (Diagram 1); nutrient supply to phytoplank-
ton (Diagram 2); primary production to grazers 
(Diagram 3); detrital and microbial production to 
grazers (Diagram 4); secondary production to preda-
tors (Diagram 5); piscivory (Diagram 6); and an over-
all synthesis (Diagram 7). Incorporating food web 
knowledge into habitat restoration and management 
decision may help to clarify goals and expectations 
while optimizing benefits.

METHODS
Study System

The trophic interactions of the low-salinity and 
tidal freshwater aquatic habitats of the upper estu-
ary are described here. The physical geography of 
this region includes the Sacramento–San Joaquin 
Delta; the confluence of the Sacramento and San 
Joaquin rivers; and Suisun Bay and Marsh. There 
are distinct regional differences in the upper estu-
ary (Whipple et al. 2012; Durand 2014). The north 
Delta is an ebb-dominated tidal system influenced 
by fresh water flows from the Sacramento River and 
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the Yolo Bypass. It supports a mix of native and 
alien species that respond to seasonal and annual 
changes in flow, including ana dromous and migra-
tory fish. The south Delta relies on freshwater inputs 
from the San Joaquin River and cross-Delta diverted 
flows from the Sacramento River, which are then 
subject to export. The region is characterized by low 
flows and high residence time, resembling a tidal 
lake. It is dominated by invasive organisms, includ-
ing the Asian clam Corbicula fluminea, invasive 
aquatic weeds, and alien centrarchid fishes such as 
largemouth bass (Micropterus salmoides). The west-
ern Delta and Suisun Bay are characterized by the 
interaction of fresh water flows with tidal marine 
influences, creating a brackish estuarine mixing 
zone. Brackish water limits the westward range of 
C. fluminea, which is supplanted by the salt-tolerant 
overbite clam P. amurensis. Suisun Bay is bordered 
by Suisun Marsh, which is characterized by a mosaic 
of fresh water managed wetlands and brackish tidal 
channel networks, and supports a diverse assembly of 
native and alien species (Moyle et al. 1986). 

Model Components

Ecological relationships are described using a Driver–
Linkage–Outcome approach similar to that used in 
the DRERIP process for Ecosystem Conceptual Models 
(DiGennaro et al. 2012). Drivers are physical or 
chemical effects on food web processes. Intermediate 
outcomes are species population responses to the 
drivers, at different trophic levels, via the associated 
linkages. Fish population responses are the final out-
comes. Linkages are the arrows in the diagrams that 
describe the reciprocal influence of drivers, interme-
diate outcomes, and outcomes. 

The direction, size, color, and pattern of the link-
ages together describe ecological outcomes: that is, 
potential population increase or decrease. Linkages 
are imbued with attributes that describe the nature 
of the relationship, including the magnitude (indi-
cated by line size); scientific understanding (line 
color); predictability (line pattern); and direction 
(arrows  =  positive, clubs  =  negative) of the effect 
(Figure 1). Criteria for levels were standardized for 

all the DRERIP models (DiGennaro et al. 2012), and 
adapted to the food web model (Table 1).

Each diagram represents a different trophic step, 
described in detail, along with relevant references to 
facilitate further investigation. The blue band on the 
top includes the pelagic web, the grey band on the 
bottom the detrital organic carbon web, and the white 
interior band includes carbon and nutrient sinks.

Populations can be understood to be limited when 
large clubs or many clubs are directed at them. For 
example, in Diagram 3, Linkage 3.14 shows strong 
limitation of diatoms by bivalves. This limitation 
may resonate up the food web, so that the effect 
of Linkage 3.11 from diatoms to zooplankton also 
will be limited by clam grazing, as will the effect of 
Linkage 5.11 (Diagram 5) from zooplankton to plank-
ton-feeding fishes. 

Linkages refer to all sub-categories that a box may 
include. For example, Diagram 4, Linkage 4.29 refers 
to all microzooplankton (ciliates, rotifers, etc.) in 
the grey and yellow box. In contrast, Linkage 4.25 
refers only to the relationship between Ciliates and 
Limnoithona.

Figure 1  Key to symbols. Each linkage is imbued with symbols 
that indicate magnitude (line thickness), scientific understand-
ing (line color), predictability (line pattern) and directionality 
(line terminus shape) of the effect. Positive population level 
effects include carbon and nutrient flows, or bottom-up 
effects. Negative population effects include grazing and pre-
dation, or top-down effects. Two-headed lines mean that an 
effect is symmetrically reciprocal. Separate lines indicate that 
one or more aspects of the magnitude, understanding or pre-
dictability are asymmetrical.

 MAGNITUDE UNDERSTANDING PREDICTABILITY DIRECTIONALITY

 High Positive

 Medium Negative

 Low 
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Food Web Assumptions

Food webs are model representations of complex 
trophic interactions found in nature (Polis and 
Strong 1996; Dunne et al. 2002). From highly simpli-
fied (Elton 1927) to reticulate (Lafferty et al. 2008) 
models, food webs rely on simplifying assumptions 
about membership, currency, and feeding strategies. 
Topological food webs, such as the one presented 
here, are simplified, qualitative descriptions of inter-
specific interactions. Below are key assumptions of 
this model.

1. Relative importance of linkages remains consistent. 
Hydrodynamics can create periods of co-occur-
rence and separation among pelagic and benthic 
organisms, such as grazing clams and pelagic 
prey (Lopez et al. 2006; Thompson et al. 2008). 
Flows also structure interactions, as when over-
land flows deliver trophic subsidies (Sommer et 
al. 2001; Lehman et al. 2007). Periods of low flow 
may support phytoplankton blooms in regions of 
high residence time (Glibert et al. 2014). Although 
trophic relationships are influenced by regional, 
seasonal, and inter-annual availability, we 
assumed for the purposes of the model that the 
relative strength of linkages does not change. 

2. Linkages describe population-level responses. The 
model captures functional trophic relationships 
on a population level, and summarizes under-

standing and uncertainties. Each linkage has a 
positive direction (an arrow) indicating popula-
tion increase, and a negative direction (a club) 
indicating population decrease (Puccia and Levins 
1985). The positive arrow parallels the flow of 
carbon and nutrients to higher trophic levels. The 
negative arrow generally represents predation.

3. Linkages emphasize trophic relationships that 
increase or reduce food supply for fish. Fish are 
integrators of ecosystem function (Vadeboncoeur 
et al. 2002; Vander Zanden and Vadeboncoeur 
2002), and of particular importance in the estu-
ary because of declines (Sommer et al. 2007; Mac 
Nally et al. 2009). Choices about inclusion in 
the food web were based upon direct or indirect 
importance to fish populations. Phytoplankton 
are discussed as an important food pathway 
to pelagic grazers. Zooplankton are important 
to nearly all species of juvenile fishes and to 
planktivorous and filter-feeding adult fishes. The 
invasive clams P. amurensis and C. fluminea 
are included because of their known impact on 
phyto- and zooplankton populations (Kimmerer 
1996, 2006). Epibenthic invertebrates are included 
because they are well-represented in fish diets, 
and because of evidence that amphipods have 
replaced the native mysid (Neomysis merce-
dis) as an important food source (Kjelson and 

Table 1  Criteria for levels used in linkage a

Level Magnitude Understanding Predictability

Ranked linkage 
characteristics

Size of population response Level of scientific understanding The likelihood that a population will 
respond consistently 

High Sustained major population level 
effect; the driver contributes 
substantially to population 
productivity, abundance, or spatial 
distribution

Based on peer-reviewed studies 
from within the system and scientific 
reasoning supported by most experts 
within the system

Outcome largely unconstrained by 
ecosystem or external variability, or 
under specific conditions indicated by 
model 

Medium Sustained minor population effect Based on peer review studies from 
outside the system and corroborated 
by non-peer-reviewed studies within 
the system

Outcome is dependent on ecosystem 
or external variability

Low Effect limited to small population 
fraction, or minor influence on 
productivity, or limited spatio-
temporal effects

Based on peer reviewed-research 
within the system or elsewhere

Outcome is greatly dependent on 
ecosystem or external variability 

a. Source: DiGennaro et al. 2012.
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Fisher 1982; Feyrer et al. 2003; Dean et al. 2005; 
Nobriga and Feyrer 2008; O’Rear 2012). 

4. No distinctions are made between native and alien 
species. Introductions of alien species to the estu-
ary have been occurring since the early 1800’s, 
such that alien species make up 40% to 100% of 
species, 97% of the total number of organisms, 
and up to 99% of the biomass in certain habitats 
of the estuary (Cohen and Carlton 1998). The 
effect of introduced invertebrates ranges from 
complete integration to the food web (the cope-
pod Pseudodiaptomus forbesi), to deep disruption 
(the overbite clam P. amurensis). Because possi-
bilities for removal of established aliens are often 
limited (Kimmerer 2004), the food web includes 
species currently naturalized to the upper estuary, 
regardless of origin.

FOOD WEB DIAGRAMS
Diagram 1—Main Physical Drivers

Estuaries are defined by the hydrodynamics of 
freshwater and saltwater across geomorphic struc-
ture (Elliott and McLusky 2002; Potter et al. 2010). 
Complex hydrodynamics affect nearly every aspect 
of the food web (Weissburg and Zimmer–Faust 1993; 
Kimmerer et al. 1998; Kimmerer 2002; Jones et 
al. 2009; Enright 2010, unreferenced, see "Notes"). 
Unlike physical structure, hydrodynamic features 
change with inflow and tides (Monismith et al. 2002; 
Enright 2008, 2010, unreferenced, see "Notes"). 
Differences in physical mobility change the man-
ner in which organisms confront their environment: 
planktonic organisms are subject to tidal movement, 
and are less subject to abrupt changes in water qual-
ity; benthic organisms are less affected by tide, but 
must cope with water quality changes (Kimmerer et 
al. 2001; Kimmerer 2004). 

1.10  Hydrodynamics

Estuarine hydrodynamics result from the interaction 
of directional fresh water inputs and bi-directional, 
tidally-driven marine influences (Potter et al. 2010), 
affecting turbidity, salinity, water quality, and 
stratification, as well as the transport of water qual-

ity constituents and nutrients (Elliott and McLusky 
2002). There are large, well-understood, and predict-
able direct effects of hydrodynamics (Driver 1.10) 
on pelagic food web constituents, including phyto-
plankton (Linkage 1.11), zooplankton (Linkage 1.12), 
planktonic fish (Linkage 1.13), microbial organisms 
(Linkage 1.14), and detritus (1.15). The effect of 
hydrodynamics on pelagic hydromedusae may be 
of moderate importance, understanding, and pre-
dictability (Linkage 1.16). Hydrodynamic effects of 
key importance are residence time and its obverse, 
transport (Herrgesell et al. 1981; Kimmerer 2002a, 
2002b; Moyle et al. 2010). Long residence times can 
induce blooms of phytoplankton and zooplankton 
by retaining organisms in a suitable environment. 
Extended residence time can also contribute to bloom 
cessation, when nutrients are drawn down below the 
Redfield ratio (an indicator of productive capacity, 
indicated by the molar ratio of 106C:16N:1P [Redfield 
1958]). Shorter residence times imply increased trans-
port of nutrients and organisms within or out of the 
estuary. In the estuary, the magnitude of water move-
ment by tidal action is generally much greater than 
the magnitude of flow (Schoellhamer 2000, 2002; 
Kimmerer 2004). Because of this, tidal dynamics slow 
net flow through the upper estuary during much of 
the year, thereby increasing residence times.

Estuarine turbidity maxima (ETMs) are mixing zones 
that result from interactions between suspended 
particles, fresh and brackish water, and geomor-
phic complexity (Cloern 1996). Mixing zones retain 
sediment, phytoplankton and zooplankton, creating 
opportunities for trophic linkages to occur in that 
space (Fisher et al. 1988). ETMs can occur at mul-
tiple locations, and move tidally. The western end of 
Suisun Bay has a geographically fixed ETM as the 
result of flows interacting with a sill near Benicia 
(Schoellhamer 2000). 

Tidal exchange is the amount of water that is 
ad vected in and out of a slough by tidal action 
(Williams et al. 2002; Williams and Orr 2002; Ritter 
et al. 2008). As tidal magnitude varies, so too will 
the tidal exchange of any given slough or region, 
creating changing residence times across the tidal 
cycle and across different landforms. This pattern of 
mixed residence times allows biological production 

http://dx.doi.org/10.15447/sfews.2015v13iss3art5
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to be accumulated and then exported, with periodic 
exchanges of new water and nutrients (Enright 2008, 
unreferenced, see "Notes"; Enright et al. 2013). The 
channelization of sloughs for flood control short-
ens them relative to tidal excursion. As a result, 
water and particles in these sloughs likely have 
greatly reduced residence times, allowing for little 
biomass accumulation, as constituents are more rap-
idly advected away (Enright 2006, unreferenced, see 
"Notes"). 

Hydrodynamics in the Delta create high-nutrient, 
low-velocity, low-turbidity, warm-water environ-
ments that support harmful algal blooms (largely 
Microcystis sp.) (Jacoby et al. 2000; Lehman et 
al. 2005, 2008) and the establishment of nuisance 
aquatic vegetation (largely E. densa and Eichhornia 
crassipes) (Brown and Michniuk 2007; Sousa et al. 
2009, 2010; Yarrow et al. 2009). Stands of E. densa 
alter the physical structure of Delta channels and 

support the colonization of non-native fishes such 
as sunfish (Centrarchidae), which are often able to 
outcompete or prey upon native fishes (See 2.30 
Structure, below) (Grimaldo and Hymanson 1999; 
Grimaldo et al. 2004; Nobriga et al. 2005; Nobriga 
and Feyrer 2007; Ferrari et al. 2014). 

Water diversions occur throughout the Delta for 
urban and agricultural use (Nichols et al. 1986). 
In-Delta diversions are numerous, and remove and 
return large quantities of water (Lund et al. 2007). 
The principal water exporters are the state and fed-
eral pumping facilities in the south Delta. Along with 
water, these facilities remove nutrients, primary and 
secondary production, and fish. The magnitude of 
these exports periodically reverses flow in the Old 
River and Middle River branches of the San Joaquin 
River, and redirects water from the Sacramento River 
across the Delta to the south. Non-diverted fresh 
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water, nutrients and production leave the Delta as 
outflow via Suisun Bay (Kimmerer 2004). 

Changes in direction of flow from a seaward direc-
tion to a cross-Delta direction may have the larg-
est effects on Suisun Bay, which receives less flow 
since large diversions began in the 1960s (Moyle et 
al. 2010). This may have reduced turbidity and food 
availability in the Suisun region. If plankton produc-
tion is density-dependent, then removal by export or 
outflow may be replaced by in situ productivity. If 
production is not density-dependent, then export may 
result in lower phytoplankton and zooplankton abun-
dance. Considerable uncertainty remains about this 
problem (Jassby et al. 2002; Kimmerer 2002a, 2002b; 
Kimmerer 2004; Jassby 2008; Kimmerer et al. 2009). 

1.20  Salinity

Salinity (Driver 1.20) shows an important, well 
understood, and predictable linkage to bivalves 
(1.21), and important, moderately understood, and 
moderately predictable linkages to hydromedusae 
(1.22), piscivores, and demersal fish (1.23). Although 
virtually all organisms in the estuary respond to 
salinity, shifting distribution and abundance as salin-
ity changes, organisms with a stationary life stage 
are more vulnerable to halide stress. 

Salinity defines the aquatic structure of an estuary 
by influencing hydrodynamics, including stratifica-
tion, circulation, and mixing zones (Kimmerer 2002b; 
Kimmerer 2004). Salinity generally decreases in the 
landward direction, although some low flow regions 
near the Stockton deep water ship channel and the 
Sacramento Deep Water Ship Channel may exhibit 
inverted patterns of salinity, with increased salin-
ity occurring landward during hot, dry periods (from 
evaporation of agricultural drainage water) (Conomos 
et al. 1985). 

Estuarine assemblages are dominated by species that 
can tolerate some osmotic stress. Species diversity 
may be high because salinity can form a gradient 
within which different species may coexist without 
direct competition or interference (Wagner 1999; 
Martino and Able 2003). Seasons or years of high 
fresh water outflow expand low-salinity or freshwater 

habitat (Kimmerer 2004). The converse occurs during 
low flows; low-salinity habitat can become very lim-
ited where the Sacramento River becomes constrained 
by geomorphology and levees. This expansion or 
contraction may affect both planktonic and fixed 
organisms (Moyle et al. 2010, but see Kimmerer et al. 
2009).

Generally, salinity changes are most stressful on 
stationary benthic organisms. These organisms may 
be subjected to tidal or seasonal shifts in salinity 
that limit their range or their ability to forage and 
reproduce (Kimmerer 2004). Both of the invasive 
clams P. amurensis and C. fluminea are reciprocally 
limited by salinity: the former by fresh water (below 
~2 psu) and the latter by brackish water (above 
~2 psu) (Carlton et al. 1990; Nichols et al. 1990; 
Hymanson et al. 1994). The mechanism of limitation 
is thought to act on the recruitment stage, when clam 
larvae are most vulnerable to halide stress; adults 
have mechanical and physiological mechanisms to 
resist salinity stress (Paganini et al. 2010; Miller and 
Stillman 2013; Miller et al. 2014). Clam management 
using salinity will require varying salinity at critical 
times and for extended durations, and the contraction 
of one population may be met with the expansion 
of the other complementary population. Other spe-
cies may be more readily constrained by salinity. The 
aquatic plants E. densa and E. crassipes are limited 
to the mostly freshwater region east of Browns Island 
(Haller et al. 1974; Hauenstein and Ramirez 1986).

1.30  Stratification

Stratification (Driver 1.30) has an important, well 
understood and predictable effect on primary produc-
tivity (Linkage 1.31), by maintaining phytoplankton 
in the photic zone, above the critical depth at which 
mixing below the surface causes a net loss of produc-
tion through respiration (Cloern 1996). Stratification 
can also insulate against bivalve grazing, and accel-
erate the draw-down of ammonium (NH4) (Diagram 2, 
Linkage 2.33), both of which can otherwise interfere 
with bloom formation. Figure 2 shows how different 
stratification depths can affect net primary produc-
tion (Lucas et al. 2002).

http://dx.doi.org/10.15447/sfews.2015v13iss3art5
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Because the doubling time of diatoms (a particularly 
nutritious form of phytoplankton) occurs on the 
order of days, stratification must exist for at least 
a few days to promote bloom formation (Kimmerer 
2004). The linkage with zooplankton (1.32) is of 
moderate importance, and although it is well under-
stood, it has only moderate predictability because the 
response time of zooplankton is much greater than 
the response time of phytoplankton. The linkage to 
microzooplankton (1.33) is expected to function sim-
ilarly to that for zooplankton, but there is less scien-
tific understanding of this relationship. Zooplankton 

and microzooplankton may benefit from stratification 
when phytoplankton food sources become concen-
trated (Lopez et al. 2006; Cloern 2007). 

1.40  Structure and Topography

Geomorphology constrains tides and flows, creating 
the complex hydrodynamics that typify an estuary, 
including salinity gradients, residence time varia-
tion, mixing zones and stratification (Enright et al. 
2013). At large scales, the geomorphology of the 
estuary creates distinct ecological regions (Whipple et 

Figure 2  Effects of stratification, mixing, and grazing on phytoplankton production. Photic depth is the depth to which photosyntheti-
cally active radiation can penetrate, supporting active photosynthesis in phytoplankton. Sverdrup critical depth is the depth at which 
mixing of phytoplankton causes photosynthesis and respiration to balance, resulting in zero net primary production. When the water 
column is vertically well-mixed, phytoplankton productivity may become negative (i.e., respiration exceeds photosynthesis), high mor-
tality may occur from clam grazing, and ammonium draw-down cannot occur. Stratification isolates phytoplankton in the upper water 
column, facilitating blooms.
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al. 2012). These regions are separated by long straits 
(Sacramento River, Carquinez Strait) that provide 
corridors for species such as Sacramento splittail 
(Pogonichthys macrolepidotus), migrating salmo-
nids, smelt, and sturgeon (Kjelson and Fisher 1982; 
Schaffter and Kohlhurst 1997; Moyle et al. 2004; 
Feyrer et al. 2005; Sommer et al. 2011). 

Structure at intermediate scales includes floodplains, 
wetlands, and ponds, which may have local effects on 
salinity, turbidity, stratification, residence time, tem-
perature, productivity and dissolved oxygen (Enright 
and Culberson 2009; Lehman et al. 2009; Enright et 
al. 2013). For example, emergent wetlands influence 
local water quality and food production (Simenstad 
et al. 1999; Howe and Simenstad 2007, 2011). Ponds 
can create low dissolved oxygen conditions in adja-
cent sloughs, or export food subsidies (O’Rear and 
Moyle 2010; O’Rear 2012). Floodplains (such as the 
Yolo Bypass or Cosumnes River) may provide large 
seasonal food subsidies to the Delta in the form of 
detritus (derived from aquatic and terrestrial vegeta-
tion), phytoplankton and zooplankton (Sommer et al. 
2001; Lehman et al. 2007). The Sacramento River, as 
the largest single input into the upper estuary, has 
large regional influence, and is likely a major source 
of detrital subsidies to the region (Jassby 2008) 
(Linkage 1.41). 

On small scales, physical structure such as gates, 
pilings, submersed aquatic vegetation (SAV) and 
large wood offer opportunities for both resident 
and non-resident fishes to forage and find habitat 
(Linkage 1.42). Centrarchid fishes use vertical struc-
ture like woody debris and vegetation for refuge and 
foraging (Grimaldo and Hymanson 1999; Nobriga et 
al. 2005; Ferrari et al. 2014); catfish create burrows 
in muddy banks (Moyle 2002); and striped bass prob-
ably use flow fronts and eddies created by water flow 
against structures (2013 in-person conversation with 
T. O’Rear, unreferenced, see "Notes"). 

Wood benefits native and non-native fishes by pro-
viding structure for both hunting and hiding (Everett 
and Ruiz 1993; Robertson and Crook 1999). Wood 
is rare in the estuary because most waterways are 
maintained for transit by various government agen-
cies, and many levees are required to be free of trees 

to meet federal flood-control standards. Most hard 
physical structure is in the form of riprapped levees, 
which favor benthic fishes such as prickly sculpin 
(Cottus asper) and gobies (Gobiidae) (unpublished 
data); and to a lesser degree by pilings and docks, 
which favor predators such as sunfish, largemouth 
bass, and striped bass (Helfman 1981; Hurst and 
Conover 2001). 

Structure provides substrate to many epibenthic 
invertebrates (Linkage 1.43). Invertebrates like 
corophiids and other amphipods colonize nearly all 
hard structure, and a variety of aquatic epiphytic 
invertebrates colonize vegetation (Brown and May 
2000), leading to foraging opportunities for organ-
isms at higher trophic levels (Everett and Ruiz 1993; 
Robertson and Crook 1999; Sindilariu et al. 2006). 

Once established, E. densa facilitates non-native 
fishes to the exclusion of most natives (Grimaldo and 
Hymanson 1999). It exerts strong physical control 
over the system; dense stands can slow flow, increase 
temperature, and reduce turbidity. Alien largemouth 
bass and other centrarchids use E. densa for forag-
ing, outcompeting native fishes (such as Sacramento 
perch, Archoplites interruptus) (Moyle 2002), or 
directly preying upon them (such as splittail) (Brown 
2003). 

1.50  Depth 

Depth (Driver 1.50) can regulate the circulation of 
phytoplankton below the photic zone, creating dif-
ferences in production between shallow and deep 
water (Linkage 1.51) (Lucas et al. 2002). Because 
photosynthetically active radiation (PAR) attenuates 
as a function of water depth and turbidity, the rate 
of photosynthesis declines with depth. As photosyn-
thesis decreases, net productivity decreases, eventu-
ally becoming negative because of plant respiration. 
The depth at which net photosynthesis is equal to net 
respiration is called the critical depth (Sverdrup 1953; 
Lucas et al. 1998). In shallow areas, phytoplank-
ton are usually maintained above the critical depth, 
resulting in net production. In deeper water, phyto-
plankton may circulate below the critical depth and 
lose carbon through respiration, unless stratification 
occurs. Biomass accumulation in shallow water may 
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be preserved by a trophic cascade in which foraging 
sturgeon, splittail, and diving ducks limit clam abun-
dance and release grazing pressure on phytoplankton 
(Richman and Lovvorn 2004) (Linkage 1.52). Shallow 
water production that is exported to deeper channels 
may subsidize those lower-production, heterotrophic 
environments (Lucas et al. 2002; Lopez et al. 2006).

1.60  Turbidity

Turbidity (Driver 1.60) is a measurement of light 
attenuation through the water column by sedi-
ment, organic matter, phytoplankton, or any other 
advected material. Turbidity is generally decreasing 
in the estuary (i.e., clarity is increasing), as historic 
hydraulic mining sediments continue to be removed 
and new inputs are limited (Wright and Schoellhamer 
2004). There are distinct regions of turbidity differ-
ences in the upper estuary (Durand 2014). The low-
est turbidity values are found in the central Delta, 
which are on average < 10 NTU. The highest values 
are found in the north Delta and Suisun Marsh, 
and average well over 30 NTU. However, turbidity 
has large seasonal variability, with lower values in 
summer. 

Turbidity is of moderate importance to phytoplank-
ton (Linkage 1.61) and zooplankton (Linkage 1.62). 
High turbidity can decrease the photic zone and the 
critical depth, resulting in lower rates of net primary 
production (Cloern 1987). However, phytoplankton 
blooms have tended to decrease at least since 2000, 
in spite of low turbidity, suggesting that phytoplank-
ton are limited by some other mechanism (Kimmerer 
2004). Some organisms, including planktivorous fish 
(Linkage 1.63) may rely upon turbidity for foraging 
and protection from predators (Bennett and Burau 
2015). For example, delta smelt may use turbidity to 
assist with visual discrimination of prey during feed-
ing (Lott 1998; Nobriga 2002; Baskerville–Bridges et 
al. 2003). 

Diagram 2—Nutrient Supply to Phytoplankton

Nutrient supply is one of many factors that con-
trol the rate of production. Hydrodynamics control 
transport and residence time of nutrients and phy-
toplankton. Uptake rates of nutrients are influenced 
by light availability and attenuation from depth and 
turbidity. Stratification can control both the refresh 
rate of nutrients and the circulation of phytoplankton 
below the photic zone. Despite nutrient availability, 
the upper estuary has relatively low phytoplankton 
production and biomass compared to other estuaries 
(Boynton et al. 1982; Nixon et al. 1986; Jassby et al. 
2002; Wilkerson et al. 2006). The cause of this con-
tinues to be debated, but it is probably a function of 
multiple, interacting stressors including: historic loss 
of shallow water habitat and dendritic channel net-
works, as well as contemporary changes to turbidity, 
hydrodynamics, water export, benthic grazers, and 
nutrient loading (Mount et al. 2012).

Phytoplankton in the upper estuary are dominated 
by diatoms and microflagellates (Lehman and Smith 
1991; Müeller–Solger et al. 2002). Linkage 2.11 
shows the important, well understood, and predict-
able effect of silica on diatoms and the small recip-
rocal effect of diatoms on silica. Linkages 2.21 and 
2.22 show the important, well understood and pre-
dictable effect of nitrate (NO3) on diatoms and micro-
flagellates, with small reciprocal effects. Regions 
downstream of the Sacramento River are generally 

SIDEBAR 1

Key Uncertainties: Physical Drivers

• The effect of physical transport across boundaries 
of spatially distinct regions of localized production 
(from ponds, floodplains, etc.) on pelagic 
production

• The disposition of ETMs in the upper estuary and 
their effect on localized food webs

• The effect of water diversions and export on 
nutrient concentration, phytoplankton and 
zooplankton abundance

• The effect of small-scale structure on predation 
and refuge-seeking

• Physical limits on clam distributions

• Regional differences in turbidity and food web 
effects
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unlimited by nitrogen because of anthropogenic 
inputs deriving primarily from waste water treatment 
facilities (WWTFs) (Hager and Schemel 1992). This 
may not be the case north of the confluence of the 
Sacramento River and the Sacramento Deep Water 
Ship Channel (SDWSC), around Liberty Island, where 
nutrient inputs may be more limited (2014 in-person 
conversation with R. Dahlgren, unreferenced, see 
"Notes"). Areas with limited exchange or high uptake 
may have sufficient resident time to draw down 
nutrients, slowing primary production. 

Linkages 2.31 and 2.32 show uptake of NH4 by 
diatoms and microflagellates. NH4 has increased 
in the upper estuary since the Clean Water Act of 
1972, as a result of required secondary treatment at 
WWTF’s (Jassby 2008). NH4 may inhibit diatom use 
of NO3 through a mechanism of preferential uptake 
(Linkage 2.33) (Dugdale et al. 2007), but diatoms 
exhibit lower rates of production when using NH4. 
The threshold value for NO3 inhibition in the estuary 
occurs at NH4 concentrations greater than 1 µmol L-1, 
with complete inhibition above NH4 concentrations 
of 4 µmol L-1. For certain phytoplankton species, 
particularly some diatom species, NO3 uptake may 
be linear (or biphasic), while NH4 uptake shows clas-

sical Michaelis–Menten kinetics, saturating at con-
centrations above 5 µmol L-1 NH4. Thus, when other 
conditions are favorable for growth, phytoplankton 
may still contend with high NH4 concentrations, 
which inhibit access to NO3, keeping N uptake and 
biosynthesis low, and disrupting the formation of 
blooms (Dugdale et al. 2007). Optimal conditions for 
diatom production may occur only during stratifica-
tion of the water column. Since stratification isolates 
the water body, phytoplankton NH4 draw-down can 
occur, relieving inhibition of NO3 uptake, allowing 
bloom formation as a result of high primary produc-
tion rates. This process may occur also in embay-
ments or sloughs, wherever a water body can become 
sufficiently isolated to cause plankton to draw down 
NH4 in situ. This has become an increasingly rare 
event, happening in Suisun Bay only rarely since 
2000, although a minor bloom occurred in Suisun 
Bay during 2014 (Glibert et al. 2014). Blooms can 
continue until they are broken up by increased flows, 
turbulence from wind—causing mixing—or drawdown 
of nutrients by the phytoplankton bloom itself. 

Linkages 2.41 and 2.42 show the important, mod-
erately well-understood, and moderately predictable 
effect of phosphate (PO4) on phytoplankton. The 

Phytoplankton: 
Diatoms

Phytoplankton: 
Microflagellates

2.31

2.41

2.22

2.32

2.33

2.42

Ammonium

Phosphate

Intemediate Outcomes: Production

Silica

2.11

2.21

Nitrate

Diagram 2  Nutrient supply to phytoplankton
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reciprocal effect shows the small effect of drawdown 
on PO4, suggesting that it is unlikely to be limiting 
in the brackish upper estuary. However, PO4 may 
be limiting in some fresh water regions because of 
high N:P ratios, resulting from secondary treatment 
in WWTFs. (Van Nieuwenhuyse 2007).BUnder some 
conditions in late summer and fall, cyanobacteria 
such as the noxious Microcystis sp. can be common 
(Lehman et al. 2008). Harmful algal blooms may be 
related to high concentrations of NH4 (Lehman et 
al. 2010). Microcystis is known to be toxic to both 
invertebrates and vertebrates; although toxicity has 
been demonstrated on copepods in the laboratory, 
it is unknown whether it can cause population-level 
effects on zooplankton abundance (Ger et al. 2009, 
2010). 

Diagram 3—Primary Production to Grazers

Phytoplankton are considered to be the chief engine of 
food production in open water bodies such as oceans, 
lakes, and reservoirs. In contrast, the food webs of 
lotic systems are driven primarily by riparian-derived 
allochthonous production. Estuarine aquatic food 
webs are a complex mix of both pelagic and inter-
tidal marsh production (Jassby et al. 1993; Jassby and 
Cloern 2000; Sobczak et al. 2002, 2005). 

Phytoplankton species composition probably shifts 
seasonally and annually with prevailing conditions, 

although taxonomic analysis is limited in most studies 
(Lehman 2000). Differences in the nutritional content 
of phytoplankton may affect development times, egg 
production rates, and recruitment success of zooplank-
ton grazers (Müeller–Solger et al. 2002; Sobczak et al. 
2002; Glibert et al. 2011). Diatoms are able to com-
plete the general physiological requirements of many 
zooplankton (Müeller–Solger et al. 2002; Jassby et al. 
2003). 

Linkage 3.11 shows the large, well-understood, pre-
dictable effect of diatoms on zooplankton. Although 
zooplankton are known to graze down blooms in some 
lacustrine and marine systems, zooplankton have a 
small reciprocal effect on diatoms in the upper estuary, 
largely because diatoms are limited by low produc-
tion and by Linkage 3.14, the symmetrical, important, 
well-understood, predictable effect between bivalves 
and diatoms. This linkage represents the ability of the 
clams P. amurensis and C. fluminea to clear phyto-
plankton from the water column, limiting it for com-
petitors. Linkage 3.12 shows the low importance of 
diatoms to filter-feeding fish (such as clupeids) and a 
small reciprocal effect on diatoms. Linkage 3.13 shows 
the moderately important, well-understood, predictable 
benefit of diatoms to epibenthic invertebrates, and the 
small effect on diatoms. Mysids feed upon diatoms dur-
ing juvenile stages, but have declined since competition 
for phytoplankton increased with the introduction of P. 
amurensis. The amphipod Gammarus daiberi may use 
benthic diatoms in addition to other food sources. 

Microflagellates, generally too small for calanoid cope-
pods, may be used supplementally by smaller species 
(Gifford et al. 2007) such as the cyclopoid copepod L. 
tetraspina, as shown in Linkage 3.21; the reciprocal 
effect is minor. Linkage 3.22 shows that microflagel-
lates are a potentially important source of food for 
micro-zooplankton, including rotifers, ciliates, and 
flagellates, with a small reciprocal effect on the abun-
dance of microflagellates. Linkage 3.23 shows that 
microflagellates may be an important secondary food 
source for bivalves. The reciprocal effect of bivalves on 
microflagellates is potentially quite large, suggesting 
that bivalves are an important sink for most phyto-
plankton, and have a key role in limiting blooms.

Phytoplankton blooms occur when production is great-
er than loss to advection, grazing, or other mortality 

SIDEBAR 2

Key Uncertainties: Nutrient Supply to 
Phytoplankton

• Nitrogen availability in the north Delta.

• The conditions that support NH4 inhibition of 
phytoplankton.

• Uptake of nitrogen by competing submersed, 
floating, and emergent wetland plants.

• The effect of nutrients, nutrient ratios, 
temperature and turbidity on phytoplankton 

• Blooms and species composition.

• The cause of harmful algal blooms and their effect 
on upper trophic levels.
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(Cloern 1996). High abundance of phytoplankton can 
promote growth and reproduction for secondary pro-
ducers (Carpenter et al. 1987, 2001). Maximum feeding 
during blooms can accelerate zooplankton survival, 
development, and egg production (Mullin and Brooks 
1970a; Mullin and Brooks 1970b). Zooplankton are 
capable of grazing down blooms in lakes (Carpenter et 
al. 1987), but it is difficult to show similar activity in 
the estuary where conditions are more dynamic (York 
et al. 2013). However, although intensive zooplank-
ton grazing can occur in response to phytoplankton 
blooms, clam grazing is persistent and chronic, and can 
prevent bloom formation. This is because the clams use 
multiple food sources, and can persist for an extend-
ed time (> 6 months) without feeding (Werner and 
Hollibaugh 1993; Greene et al. 2011).

Phytoplankton is generally low in the upper estu-
ary, and diatom blooms have been rare in Suisun Bay 
since about 1987 (Dugdale et al. 2013). Bloom forma-
tion probably requires at least some of the following 
conditions:

• Nutrient levels cannot be limiting. This means 
that a Redfield ratio of 106N:16P:1C must be pres-
ent (Boynton et al. 1982; Cloern 1999). 

• NH4 may need to be lower than 4 ug L-1. 
(Dugdale et al. 2007). 

• Mixing below the photic zone (or critical depth) 
must stop, which generally implies a cessation 
of aeolian (wind-driven) mixing (Cloern 1987; 
Jassby et al. 2002; Cloern 2007; Cloern and 
Jassby 2010). 

• Grazing pressure must be released. When grazing 
is intense from the invasive clams P. amurensis 
and C. fluminea, blooms tend not to form even 
when production is high, because consumption is 
higher than production (Alpine and Cloern 1992). 

Clam grazing pressure can be released by two mecha-
nisms. First, temporary release from pressure occurs 
when stratification causes phytoplankton to be con-
fined to the upper layer of the water column and 
insulated from the benthos, eliminating grazing pres-

Filter-feeding fish
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Rotifers, Ciliates,
Flagellates

Limnoithona

Epibenthic Invertebrates
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Phytoplankton:
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Diagram 3  Primary production to grazers
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sure during the stratification event (Alpine and Cloern 
1992; Lucas et al. 2002; Thompson 2005). The second 
mechanism of release occurs by trophic cascade, when 
predation by waterfowl, sturgeon, and splittail reduces-
the clam population (Poulton et al. 2002; Richman 
and Lovvorn 2004; Kogut 2008). Waterfowl predation 
explain the low abundance of clams in some shallow 
water areas; and it is here that potentially productive 
blooms may form and be “exported” to adjacent habi-
tat (Cloern 2007). However, shoal blooms such as these 
are likely to be either rapidly dispersed because of the 
dynamic estuarine environment, or consumed in the 
heterotrophic deeper channels which continue to hold 
clams (Thompson et al. 2007). 

Diagram 4—Detrital Organic Carbon and 
Microzooplankton Supply to Grazers

Phytoplankton provide an efficient transfer of car-
bon to higher trophic levels (requiring fewer steps, 
with less inter-trophic energy loss). However, nearly 
five times as much detritus is imported into the Delta 
from allochthonous sources than originates from 
phytoplankton growth, (Sobczak et al. 2002; Sobczak 
et al. 2005). Allochthonous sources of detritus include 
carbon from marshes, agriculture, soil, pond produc-
tion, WWTFs, and riparian and woodland corridors. 
Autochthonous sources include dead phytoplank-
ton and zooplankton, dead aquatic vegetation (both 

floating and submersed), dead fish and other aquatic 
organisms, fecal matter and clam pseudofeces (Jassby 
and Cloern 2000). Most of this material is likely to be 
processed in the microbial food web, and possibly by 
some macroinvertebrates and demersal fishes. 

The main direct linkages to detrital organic matter 
occur with microbial organisms and invertebrates. 
Linkage 4.11 shows the important, but only mod-
erately understood transformation of detritus by 
microbes, including bacteria, flagellates, rotifers, and 
ciliates. It is through this pathway that most detritus 
is made available to higher trophic levels, but some 
uncertainty remains as to how much detrital carbon 
becomes biologically available. Bacteria are the main 
consumers of detritus and dissolved organic carbon 
(Mann 1988; Landry and Calbet 2004), making it 
available in a particulate form. Bacterial produc-
tion can be ingested and used by other organisms 
in the food web, such as ciliates (Linkage 4.12) and 
rotifers (Linkage 4.13) (Arndt 1993; Holst et al. 
1998; Rollwagen–Bollens and Penry 2003; Gifford 
et al. 2007). Rotifers may also feed upon flagellates 
(Linkage 4.14).

Linkage 4.16 shows the moderate, poorly understood 
use of detrital organic carbon by zooplankton; cope-
pods may rely on a variety of food sources (Islam 
et al. 2005; Islam and Tanaka 2006). For example, 
E. affinis and Sinocalanus doerri do not use phy-
toplankton exclusively, supplementing their diets 
substantially with particulate organic matter or cili-
ates (Gasparini and Castel 1997; Merrell and Stoecker 
1998; Gasparini et al. 1999; Islam et al. 2005). 
Zooplankton have a small effect on the pool of detri-
tus. Linkage 4.17 shows a minor reciprocal effect 
from detritus to L. tetraspina.

Linkage 4.18 indicates that bivalves may have a 
symmetric, poorly understood, and moderate effect 
on detritus. Clams may both consume detritus and 
contribute to the detrital pool through pseudofeces 
elimination or death. Linkage 4.19 shows the direct 
pathway, of minor importance, from detritus directly 
to demersal fishes such as catfish or suckers, which 
incidentally or intentionally ingest it while feeding 
on other organisms.

SIDEBAR 3

Key Uncertainties: Primary Production to  
Grazers

• The relative contribution of factors that suppress 
phytoplankton growth rates

• Relative sources of phytoplankton mortality in 
different regions of the Delta, Suisun Bay, and 
Suisun Marsh

• The effect of phytoplankton species composition 
on zooplankton production

• The effect of ephemeral phytoplankton blooms on 
zooplankton production

• The rate of consumption and dispersion of 
localized blooms originating in shallow water 
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Microbial organisms offer pathways to higher trophic 
levels through epibenthic invertebrates, zooplankton, 
and bivalves. The microbial loop is highly impor-
tant to epibenthic organisms (Linkage 4.21), offering 
a parallel, indirect pathway to the direct pathway 
from detritus seen in Linkage 4.15. Benthic inverte-
brates, particularly amphipods, feed on detritus and 
microbes, forming an important food supply to fish 
(Feyrer et al. 2003). Before the decline in plankton 
in the 1980s, the main macroinvertebrate prey for 
fishes was the formerly abundant mysid N. mercedis, 
which feeds on phytoplankton and zooplankton (Orsi 
and Knutson 1979). This represents a shift in resource 
use pathways for fishes, as a response to changing 
food availability (Simenstad et al. 1999; Howe and 
Simenstad 2011). 

Because of their relatively large sizes, ciliates and 
rotifers provide a moderate food source for both 
zooplankton (Linkage 4.22) and an occasional food 

source for plankton feeding fish (Linkages 4.23 and 
4.24). Limnoithona tetraspina uses motile microbial 
prey (Linkage 4.25) (Bouley and Kimmerer 2006; 
Gifford et al. 2007), linking it to the detrital food 
web, rather than the pelagic (phytoplankton-based) 
food web. The abundance of detritally-derived car-
bon in the estuary may give it an advantage as an 
invader. Although L. tetraspina is the dominant 
copepod in the LSZ in terms of both abundance and 
biomass (Bouley and Kimmerer 2006), it is not well-
used by bivalves (Linkage 4.26) or planktivorous fish 
(Linkage 4.27). This is likely because of phenology, 
behavior, size, or nutritive content (Sullivan 2010; 
Winder and Jassby 2010); whatever the underlying 
mechanism, L. tetraspina acts largely as a carbon 
and nutrient sink. Linkage 4.28 suggests a pathway 
from L. tetraspina to hydromedusae, but the latter 
bloom unpredictably, and this relationship is poorly 
understood.

Outcomes: PredationIntermediate Outcomes: Grazing
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Diagram 4  Detrital organic carbon and microbial production to grazers

http://dx.doi.org/10.15447/sfews.2015v13iss3art5


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

16

VOLUME 13, ISSUE 3, ARTICLE 5

Microbial organisms form a moderately important 
secondary food source for bivalves (Linkage 4.29). 
This supplemental food source may prevent clam 
populations from becoming food-limited during peri-
ods of low phytoplankton production (Werner and 
Hollibaugh 1993). 

Diagram 5—Secondary Production to Predators

Invertebrates form a critical linkage from primary 
production and organic detritus to higher trophic 
levels. Pelagic invertebrates such as zooplankton 
are important to nearly all juvenile fishes during 
their first feeding. As most fish grow, they prog-
ress to larger foods, such as mysids, amphipods 
and other epibenthic invertebrates. Filter feeders 
such as American (Alosa sapidissima) and threadfin 
(Dorosoma petenense) shad, and planktivores such 
as delta and longfin (Spirinchus thaleichthys), smelt 
remain largely tied to the pelagic food web, although 
they use epibenthic organisms such as mysids at least 
periodically (Moyle et al. 1992; Feyrer et al. 2003; 
Feyrer et al. 2007; Slater and Baxter 2014). 

Linkage 5.11 shows the well-understood and predict-
able path of zooplankton to plankton-feeding fishes. 

Zooplankton species assembly has shifted consider-
ably since the 1980s, when the introduced P. forbesi 
replaced the naturalized E. affinis as the dominant 
calanoid copepod in the upper estuary (Orsi and 
Walter 1991; Winder and Jassby 2010). By the 2000s 
calanoid copepods appeared to be in decline in many 
parts of Suisun Bay because of food limitation (Orsi 
and Mecum 1986; Kimmerer et al. 2005) and com-
petition with clams for phytoplankton (Kimmerer 
et al. 2014); direct predation of copepod nauplii by 
clams (Linkage 5.12) (Kimmerer et al. 1994; Durand 
2010); inadequate nutrition resulting from a shift in 
phytoplankton assembly (Winder and Jassby 2010); 
and advection and loss from the system by export or 
outflow (Kimmerer 2004). In addition, large copepods 
(Linkage 5.13), mysids (Linkage 5.14) and hydrome-
dusae (Linkage 5.15) prey upon other zooplankton, 
and may have a moderate and periodic effect.

Fish declines after 2002, during the POD, appear to 
mirror declines in zooplankton, although it is uncer-
tain whether the relationship is causal or merely 
correlative (Mac Nally et al. 2009). Presumably, low 
zooplankton density limits fish foraging effectiveness. 
Zooplankton make up an important part of most lar-
val fish diets during the critical period of their onto-
genetic development from yolk-sac larvae to juvenile 
stage (Nobriga 2002; Nobriga and Feyrer 2007). 
During this period, zooplankton blooms of sufficient 
magnitude must occur in proximity to larval fish to 
allow successful transition to the first feeding. If a 
juvenile fish fails to find food during this window, it 
will die; if a cohort is unable to find food during this 
stage, it may cause recruitment failure at the popula-
tion level (Hjort 1926, but see Houde 2008). 

As juvenile fish grow, they begin to exploit larger 
prey. Thus, most planktivorous, demersal, and 
piscivorous fish begin preying on epibenthic organ-
isms (Linkages 5.21 and 5.22), in effect, switching 
to the detrital food web (Heubach and McCready 
1963; Thomas 1967; Meng and Orsi 1991; Garz 1999; 
Simenstad et al. 2000; Nobriga and Feyrer 2008). 
Epibenthic invertebrates include amphipods, isopods, 
mysids, and crayfish, and appear to derive much of 
their support from detritus, mediated by microbes. As 
piscivorous fish grow, they will opportunistically take 
small fish when available, but gut content analyses 

SIDEBAR 4

Key Uncertainties: Detrital Organic Carbon and 
Microzooplankton Supply to Grazers

• Relative contribution of pelagic and detrital carbon 
among feeding guilds in fish

• The function and efficiency of the microbial web in 
processing detritus 

• Nutritional differences between mysids and 
amphipods

• The extent to which copepods E. affinis and 
P. forbesi rely upon detritally derived carbon and 
the microbial loop

• The extent to which clams use, recycle, and 
sequester detritally-derived carbon

• Contribution of aquatic vegetation, emergent 
marsh vegetation, agriculture, and riverine sources 
to bioavailable detritus
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show continued exploitation of epibenthic inverte-
brates, even in larger fish such as striped bass and 
largemouth bass. For largemouth bass, red swamp 
crayfish (Procambarus clarkii) can be the dominant 
food item (Simenstad et al. 2000; Nobriga and Feyrer 
2007; Ferrari et al. 2014). Linkage 5.31 shows the 
effect of predation by demersal fish on bivalves, 
which can be importantly locally, but has little con-
trol on the overall abundance of clams. 

The native mysid N. mercedis may represent a lost 
link of larger epibenthic organisms to the pelagic 
phytoplankton-derived web (Feyrer et al. 2003). 
Mysids are dependent upon phytoplankton dur-
ing juvenile development, switching to invertebrate 
prey as adults (Baldo Kost and Knight 1975). Mysid 
decline may be due to the decline in phytoplankton 
production (Orsi and Mecum 1986), competition for 
food with benthic grazers, loss of habitat, and com-
petition with introduced invertebrate species (Orsi 
and Knutson 1979; Knutson and Orsi 1983; Orsi and 
Mecum 1996; Feyrer et al. 2003).

Diagram 6—Piscivory

Fish tend to be opportunistic predators, and food 
resource utilization shifts with ontogenetic develop-
ment and size. Although prey types have been well 
established for many fishes, it is difficult to predict 
prey preference and the ecological role of piscivores 
in structuring prey populations. Most fish have a 
Type-III functional response to prey abundance, 
which suggests a density-dependent relationship: fish 
will capitalize on highly abundant organisms until 
they become scarce, then switch to a more abundant 
food source (Kimmerer 2004). Because prey switch-
ing is common, the role of piscivores in controlling 
other fish populations is not well established (Nobriga 
and Feyrer 2007). Moreover, although predation may 
often be the proximate cause of mortality, the ulti-
mate cause may be an interactive stressor on prey 
populations, such as ambient toxicity, loss of habitat, 
or food depletion (Grossman et al. 2013). The influ-
ence of predation and interactive drivers may also 
change regionally. 

Outcomes: PredationIntermediate Outcomes: Grazing
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Diagram 5  Secondary production to predators
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Low abundance of delta and longfin smelt and 
other small planktonic fishes offer limited forag-
ing opportunities to piscivores (Nobriga and Feyrer 
2007; Nobriga et al. 2013), but threadfin shad prob-
ably remain a source of pelagic food for striped bass 
(Nobriga and Feyrer 2008). Linkage 6.11 shows the 
link between smaller plankton-consuming fishes and 
larger piscivores and demersal fish. The linkage is 
probably of moderate importance to both predators 
and prey populations, such that predators may at 
times have moderate control over prey populations. 
Delta and longfin smelt populations are probably 
less affected by predation than by food limitation; 
although endangered salmon are likely to be limited 
by physical changes to the upper estuary watershed 
(e.g., export pumping, turbidity changes, loss of habi-
tat) (Lindley and Mohr 2003; Nobriga et al. 2005). 
Outmigrating salmon smolts may be particularly 
vulnerable at predation hotspots, but the population-
level effect on returning adults is difficult to assess 
in light of habitat modification and the uncertain 
effect of ocean conditions (Grossman et al. 2013). 
Linkage 6.21 describes the linkage between palatable 
demersal fishes (such as gobies and prickly sculpin) 
and predatory fishes such as Sacramento pikemin-

now, striped bass and largemouth bass (Nobriga and 
Feyrer 2007, 2008).

Successful threadfin shad, splittail, and salmon 
spawning may provide large numbers of larval fishes 
to predators, especially during years of high fresh 
water inflow (Daniels and Moyle 1983; Moyle et al. 
2004; Feyrer et al. 2005, 2006, 2007). During these 
years, many millions of splittail juveniles are sal-
vaged at the south Delta export pumps, suggesting 
high spawning potential when these fish have access 
to winter floodplains. Abundant larvae and juveniles 
are likely to provide a major source of food for other 
fishes such as striped bass, largemouth bass, and 
catfish. The alien Mississippi silversides may be an 
important predator of Delta smelt eggs and larvae, 
because of the foraging characteristics of silversides 
and overlap in distribution with presumed smelt 
spawning habitat, but no quantitative data exist 
(Bennett and Moyle 1996; Bennett 2005; Baerwald et 
al. 2012). Linkage 6.12 shows the periodic but poorly 
understood availability of larval fish to planktivorous 
fish. Linkage 6.13 shows the small, but poorly known 
and unpredictable effect of hydromedusae predation 
on larval fish. This effect stems in part from the ten-
dency of hydromedusae to bloom during dry years, 
when spawning success is low for many fishes. 

Diagram 7—Synthesis

The upper estuary ecosystem is fueled by two food 
web pathways that supply asymmetrical support to 
fishes. The paths differ in productivity and mechan-
ics. Although the pelagic food web is energetically 
efficient, it is now limited by at least two main fac-
tors: nutrient constituents that lower productivity 
(Dugdale et al. 2007), and benthic grazers that keep 
pelagic biomass low (Cohen et al. 1984; Foe and 
Knight 1985; Kimmerer et al. 1994; Kimmerer 2006). 
While the detrital food web is potentially vast, it may 
be energetically less efficient because of the many 
trophic steps required to reach fish (Canuel and Rau 
1995; Jassby and Cloern 2000; Sobczak et al. 2002, 
2005) and it may lack nutritive benefits provided 
by pelagic productivity (Müeller–Solger et al. 2002; 
Winder and Jassby 2010). Nonetheless, fishes that 
use the detrital food web as adults appear to be less 

SIDEBAR 5

Key Uncertainties: Secondary production to 
predators

• Predation effects and niche partitioning in calanoid 
copepods, particularly E. affinis and P. forbesi

• The effect of predatory Acartiella sinensis on 
calanoid copepod populations

• Spatial and temporal effects of zooplankton 
abundance on recruiting juvenile fish success

• The role of predators in controlling clam 
abundance 

• The importance to fish of large invertebrates such 
as crayfish

• The effectiveness of amphipods as a replacement 
for the native mysid Neomysis mercedis in fish 
diets
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vulnerable than fishes that rely mainly on the pelagic 
web. 

The traditional pelagic food web model has 3 to 
4  trophic levels that contain phytoplankton–zoo-
plankton–fish. Phytoplankton, particularly diatoms, 
support zooplankton (such as the calanoid cope-
pods E. affinis and P. forbesi) (Sautour et al. 1996; 
Breitburg et al. 1999; Tan et al. 2004) and mysid 
larvae (including the once dominant N. mercedis) 
(Linkage 3.11) (Siegfried and Kopache 1980; Bernát 
et al. 1994; Froneman 2001). These planktonic inver-
tebrates in turn support planktivorous fishes (such as 
delta smelt) and filter-feeding fishes (such as thread-
fin shad) (Linkage 5.11) (Kjelson 1971; Domermuth 
and Reed 1980; Bernát et al. 1994; Lott 1998; Feyrer 
et al. 2009). This pelagic web also supports larvae 
of fishes at the critical period in their ontogenetic 
development when they are transforming from the 
yolk stage to the first feeding stage (Nobriga 2002; 
Nobriga and Feyrer 2007). Larvae must be in spatial 
and temporal proximity to a bloom in order to suc-
cessfully transform into juveniles (Hjort 1926). 

However, since the 1980s, the engine of productivity 
has been greatly modified. Two species of bivalves 
rapidly expanded their range (Carlton et al. 1990; 
Nichols et al. 1990) and began effectively competing 
with zooplankton for phytoplankton (Linkage 3.14) 
(Thompson 2005), as well as preying directly on zoo-

SIDEBAR 6

Key Uncertainties: Piscivory

• The place of predation as an ultimate or proximate 
cause of mortality

• The relative importance of piscivory in structuring 
prey fish populations

• The relative importance of planktivory and food 
limitation on prey fish populations

• The effect of interactive factors on proximate 
mortality from predation

• The relative importance of invertebrate and fish in 
the diets of predatory fish
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plankton larvae (Linkage 5.12) (Durand 2010; Greene 
et al. 2011). The zooplankton community shifted as 
new species invaded and established species became 
rarer. Submersed and floating aquatic vegetation 
expanded into extensive tracts that provided new 
kinds of habitat and food resources. In addition, 
nutrient dynamics may have changed (Linkages 2.11-
2.42) (Glibert et al. 2011). Although nutrients are 
generally non-limiting downstream of Freeport on 
the Sacramento River, NH4 discharge from WWTFs 
increased, suppressing NO3 uptake and overall diatom 
growth (Dugdale et al. 2007). Decreasing discharges 
of PO4 may have led to nutrient limitation of phyto-
plankton in the northern Delta (Van Nieuwenhuyse 
2007). 

As a result, both primary production and biomass are 
low when compared to historical levels and to other 
estuaries (Cleorn 1987; Jassby et al. 2002), which 
leads to frequent food limitation in zooplankton and 
other pelagic organisms (Bennett and Hinton 1995; 
Orsi and Mecum 1996; Müeller-Solger et al. 2002; 

Kimmerer et al. 2002), including fishes at higher tro-
phic positions. The Delta Smelt population is feder-
ally listed as an endangered species, and the longfin 
smelt is listed as a California threatened species. 
Northern anchovy (Engraulis mordax), although not 
threatened, are rare in Suisun Bay, occurring more 
commonly in the western San Francisco Bay and off 
shore, where, presumably, they are less food-limited 
(Kimmerer 2006). Declines of planktivorous fish sug-
gest a greatly decreased contribution to piscivores 
(Linkage 6.11).

Small, localized blooms have continued to occur in 
marshes and terminal sloughs with high residence 
time. Such events may be beneficial to larval fishes 
that co-occur with the bloom. However, there may 
be little benefit for open water fishes because (1) the 
blooms are so isolated that they do not occur where 
the fish are, or (2) the blooms are diluted, dispersed 
or grazed before they can make significant contribu-
tions to the broader systemic food web (Kimmerer 
2004). Historically, multiple blooms were likely to 

Diagram 7  Conceptual model of key drivers and linkages
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occur at different spatial and temporal locations, 
maximizing opportunities for grazing by higher tro-
phic levels. Because of simplified channel network 
morphology, fewer opportunities exist for favorable 
conditions to occur in a way that will support the 
pelagic food web (Moyle et al. 2010) (Linkage 1.11). 

In contrast, the parallel detrital organic carbon web is 
fueled by a large reservoir of decaying matter derived 
from autochthonous phytoplankton and allochtho-
nous production from marshes, agriculture and up-
stream riparian habitat (Jassby and Cloern 2000). 
Sources include emergent and submersed vegetation, 
stubble from rice fields, tidal and seasonal wetland 
plants, soil runoff from storm events and agriculture 
water returns, WWTFs, and decaying organisms of 
all kinds, including clams (Sobczak et al. 2002). The 
detrital food web supports a many-tiered microbial 
community comprised of bacteria, rotifers, ciliates, 
and microflagellates (Linkage 4.11); and an epiben-
thic invertebrate community comprised of amphipods 
and isopods, aquatic insects, caridean shrimp, mysids, 
Crangon shrimp, and crayfish (Linkages 4.15 and 
4.21) (Baldo Kost and Knight 1975; Simenstad et 
al. 1999; Sobczak et al. 2005; Howe and Simenstad 
2011; York et al. 2013). The larger of these organ-
isms are a major food source for most demersal and 
piscivorous fishes (including resident and transient 
natives, and non-native centrarchid sunfish and bass) 
(Linkage 5.22) (Heubach and McCready 1963; Meng 
and Orsi 1991; Nobriga and Feyrer 2007; Nobriga 
and Feyrer 2008; Ferrari et al. 2014). Demersal fish 
likewise form a moderately important contribution to 
piscivores (Linkage 6.21).

Recruiting juvenile fishes pass through the critical 
period at first feeding (driven by pelagic produc-
tivity, Linkage 5.11), and subsequently switch to 
larger invertebrate prey, such as amphipods, that 
are derived from the detrital organic carbon web, 
at Linkage 5.22. Although epibenthic invertebrates 
are poorly studied, they account for a large propor-
tion of organisms in adult fish guts of some species 
(Nobriga and Feyrer 2007; Nobriga and Feyrer 2008; 
O’Rear 2012). Many of these invertebrates are associ-
ated with physical structure (Linkage 1.42), including 
clam shells, tree branches, rock surfaces, and SAV. 
The invasive aquatic weed E. densa harbors a high 

density of invertebrates and aquatic insects (Ferrari 
et al. 2014). Caridean and Crangon shrimp are found 
on soft-bottomed habitats, and crayfish are associ-
ated with burrows in soft bottoms or rocky rip-rap on 
levees. Invasive bivalves may also provide additional 
hard structure for amphipods. 

Historically, the pelagic and detrital organic car-
bon food webs may have been tightly coupled. 
Ontogenetic shifts in the diets of larval fishes and 
the native mysid (which uses diatoms during juve-
nile development, switching to omnivory as an adult 
[Baldo Kost and Knight 1975; Orsi and Knutson 
1979]) represent these couplings. Mysids were once 
an important source of food for a wide variety of 
planktivorous, demersal, and piscivorous fishes. 
However, the decline in pelagic production that 
resulted from clam grazing effectively caused a cor-
responding decline in mysid populations (Orsi and 
Mecum 1996). Mysid-feeding fish switched to more 
available prey, such as amphipods, which are con-
nected to the detrital web, essentially decoupling 
these fish from pelagic productivity, except for a 
brief period during ontogenetic development. Fishes 
that were not able to decouple from the pelagic web, 
such as delta smelt and northern anchovy, have 
declined or moved, respectively (Kimmerer 2006).

As a result, pelagic productivity has become 
increasingly “grounded”: removed from circulation 
and sequestered into the benthos, where it remains 
until clams excrete it as pseudofeces, release it 
through death, or are eaten by fish or birds. Clams 
are either a sink for phytoplankton-derived carbon 
(Linkage 3.14), or they re-route it through to the 
detrital web (Linkages 4.18 and 4.29). There are 
few opportunities for grounded carbon to return 
to the pelagic web, except through microbial 
production that supplies the cyclopoid copepod 
L. tetraspina (Linkage 4.25) and some calanoid 
copepods (Linkage 4.22) with supplemental support. 
Although L. tetraspina is the numerical and biomass 
dominant copepod in the LSZ, it is not an important 
prey item for fishes (Slater and Baxter 2014), which 
may account for its high abundance (Bouley and 
Kimmerer 2006). Thus, L. tetraspina is probably 
grounded back into the detrital web, or advected out 
of the system. 

http://dx.doi.org/10.15447/sfews.2015v13iss3art5


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

22

VOLUME 13, ISSUE 3, ARTICLE 5

CONCLUSIONS AND MANAGEMENT OPTIONS

The food web of the upper estuary has been altered 
by a variety of human-induced changes to the physi-
cal, chemical, and biological environment. These 
changes, when linked to climate variability (such 
as droughts) and a broad palette of species inva-
sions, have created a novel ecosystem with a suite 
of organisms that is still in the process of sorting 
winners and losers. The transformation is the culmi-
nation of over 100 years of constant anthropogenic 
manipulations and is largely irreversible. That is, no 
clear and attainable restoration point exists for most 
of the upper estuary. Although restoration activities 
will need to reference historical conditions, novel 
approaches will be required to implement functional-
ity. Currently, much restoration is designed to “plug 
and play,” under the assumption that built habitats 
will interact appropriately with hydrodynamic con-
ditions and attract a desirable suite of species (i.e., 
those targeted for conservation). This assumption is 
reinforced by the lack of active monitoring of newly 
restored sites in the system.

In addition to active monitoring, which will allow 
managers access to information to evaluate the suc-
cess of restorations, managers will likely need to 
embrace active management. Although adaptive 
management is a system of updating management 
choices from experimental approaches, active man-
agement requires deliberate decisions about short- 
and long-term goals for the restoration. Most suc-
cessful restorations will be integrated with tools that 
maximize configurability of physical structure, tidal 
and flow energy, hydrologic residence time, and spe-
cies colonization. Strategies for active management 
of food web properties will vary considerably from 
large-scale to small-scale projects. 

Manipulation of pelagic food productivity on a large 
scale will remain challenging. A few examples have 
been cited of broad-scale system response to flow 
changes. The Yolo Bypass, an off-channel causeway 
used for diverting Sacramento River flows across a 
floodplain, may contribute to phytoplankton blooms 
at times (Lehman et al. 2007), but there remain 
uncertainties as to how these inputs affect down-
stream food web dynamics and higher trophic levels. 

For example, the response of chlorophyll to flow dif-
fers between the Delta and Suisun Bay, likely because 
of the effects of intensive clam grazing in Suisun 
Bay (Jassby 2008). As a result, low flows in the Delta 
may promote local phytoplankton abundance, while 
reducing inputs to Suisun Bay. Conversely, higher 
Delta flows may increase inputs to Suisun Bay, 
while lowering standing chlorophyll in the Delta. An 
exception to this appears to have occurred in 2014, 
when low flows combined with other requisite condi-
tions to support a phytoplankton bloom in both the 
Delta and Suisun Bay (Glibert et al. 2014). 

One of the hypothesized requisites for bloom forma-
tion is low concentrations of NH4. In conjunction 
with temperature and residence time, NH4 may influ-
ence the production rate and species composition 
of phytoplankton. Requiring WWTFs to reduce NH4 
inputs may increase production rates of desirable 
phytoplankton in the Delta, but the evidence for this 
remains equivocal. Other factors may interact to keep 
phytoplankton abundance low. 

For example, in addition to high rates of productiv-
ity, bloom formation requires a period of low mortal-
ity. Clam grazing restricts this condition across large 
tracts of the upper estuary. However, some regions 
may be relatively free from clam grazing pressure, 

SIDEBAR 7

Key Uncertainties: Synthesis

• Nutritional differences between pelagic and detrital 
webs
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backwater sloughs or ponds
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particularly regions in the north Delta and in Suisun 
Marsh, and localized blooms may occur in these areas 
that can provide short-term spatial subsidies. These 
blooms often appear to dissipate by the time they 
reach Suisun Bay, either because of intensive grazing 
or dispersal. Currently, no comprehensive strategies 
exist for managing clams. Salinity (Linkage 1.21) 
could be manipulated on a system-wide scale, which 
would reduce (temporarily) the distribution of clams 
in freshwater and the LSZ, but a large volume of 
water is required to move the salinity field, and peri-
odic oscillations in brackish water or fresh water 
would be required to knock out the complementary 
species once established. 

Restorations at intermediate scales that include 
complex channel networks, such as Suisun Marsh, 
may be manipulated to control flows and salinity. 
The benefits of manipulation include opportuni-
ties for active management of pelagic production, 
using appropriate engineering of hydrodynamics and 
channel morphology. Localized production of phyto-
plankton and zooplankton may provide nursery sup-
port to recruiting fishes. However, trade-offs occur 
with changes in scale: although the hydrodynamics 
are subject to greater control because less water is 
involved, smaller volumes limit export to the sur-
rounding region. In addition, even if regions of high 
production can be engineered, such schemes will 
require effective ways to manage clams in order for 
blooms to develop.

Small-scale, localized restorations in ponds or termi-
nal sloughs frequently support high concentrations of 
both phytoplankton and zooplankton. Resident fishes 
and invertebrates may recruit to such habitats under 
the proper conditions, if there is sufficient connectiv-
ity. However, scaling is again important: ponds offer 
a high degree of control over a relatively small vol-
ume of water, limiting the effect of export from such 
habitats. 

Intermediate- to small-sized interventions may be 
very effective at supporting (1) localized high-pro-
ductivity pelagic environments that offer recruitment 
and nursery opportunities for fish, and (2) detrital 
food webs that support late-stage juvenile and adult 
fishes. In particular, marsh-based restorations will 

effectively support the latter, while offering limited 
support for the former, unless two assumptions are 
met: (1) that sites can be engineered hydrodynamical-
ly to promote sufficient residence time and exchange 
with the surrounding water body, and (2) that pelagic 
fish are sufficiently abundant or behaviorally plastic 
to target and use the habitats. Even if true, the likeli-
hood of benefits accruing for pelagic fish may only 
increase when a threshold of restoration sites along 
appropriate physical and biological estuarine gradi-
ents is surpassed. 

The difficulty of system-wide manipulations that can 
control productivity, clam grazing, SAV establish-
ment, and undesirable introduced species strongly 
supports the idea that local restoration projects 
should be prioritized. To support and inform manage-
ment, it may be desirable to establish some restora-
tions with configurable structures, such as gates, that 
allow sites to be periodically drained, dried, and re-
manipulated as necessary. Configurability allows fac-
tors like residence time, temperature, turbidity, nutri-
ents, and species assembly to be manipulated simul-
taneously to maximize benefits to the local food web. 
Such highly managed sites may also provide refuges 
for vulnerable species on short to long time-scales. 

In spite of most restoration efforts, delta smelt are 
likely to remain very limited. Extreme events offer 
high probabilities for forcing extinction. This is in 
part because pelagic, open water fishes integrate 
ecosystem conditions across a broad axis of the estu-
ary both in time and space, and weak linkages (such 
as the decline of pelagic productivity) will be felt 
strongly at some point in the life history of these 
fishes. Species that are able to make facultative shifts 
to features of a localized detrital web are likely to 
be more robust to future events. Fishes such as split-
tail, that are migratory but rely on a highly produc-
tive floodplain for spawning and recruitment, and 
local conditions for summer–fall residency, may be 
resilient, as may be fishes that feed on the abundant 
epibenthic organisms that comprise the bulk of the 
upper estuary food web. These fish will benefit from 
small restoration projects and much can be done to 
secure their populations. 
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