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ABSTRACT

We applied a water balance model to predict tidally 
averaged (subtidal) flows through the Old River 
and Middle River corridor in the Sacramento–San 
Joaquin Delta. We reviewed the dynamics that 
govern subtidal flows and water levels and adopted 
a simplified representation. In this water balance 
approach, we estimated ungaged flows as linear 
functions of known (or specified) flows. We assumed 
that subtidal storage within the control volume 
varies because of fortnightly variation in subtidal 
water level, Delta inflow, and barometric pressure. 
The water balance model effectively predicts subtidal 
flows and approaches the accuracy of a 1–D Delta 
hydrodynamic model. We explore the potential to 
improve the approach by representing more complex 
dynamics and identify possible future improvements. 

KEY WORDS

Sacramento–San Joaquin Delta, Old and Middle River 
corridor, water balance model, tidal constituents, 
subtidal flow

INTRODUCTION

Tidally averaged (hereafter referred to as subtidal) 
flow through the Old River and Middle River (OMR) 
corridor is an important metric for describing 
hydrodynamics in the interior Sacramento–San 
Joaquin Delta (Delta). As a result of south Delta 
water diversions, net flow through the corridor is 
typically in a landward (southerly) direction, except 
during times of high San Joaquin River inflow to 
the Delta. This so-called “reverse flow” affects Delta 
transport patterns and water residence times and 
thus has implications for water quality and ecology 
in the region (Glibert et al. 2014). Movement of 
water from north to south generally improves water 
quality in the OMR corridor by pulling high-quality 
water from the Sacramento River into the interior 
Delta. However, during periods of low net Delta 
outflow, this flow pattern tends to pull saline water 
from the western Delta into the interior. Salvage of 
the federally threatened Delta Smelt (Hypomesus 
transpacificus) in export facilities has been correlated 
with reverse OMR flows (Grimaldo et al. 2009). As a 
result, restrictions have been imposed on OMR flows 
as part of the U.S. Fish and Wildlife Service's Long-
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Term Biological Opinion Reasonable and Prudent 
Alternative (USFWS 2008) to limit the potential for 
smelt entrainment. Similarly, OMR flow restrictions 
are incorporated in the National Marine Fishery 
Service Biological Opinion to limit exposure of 
outmigrating winter- and spring-run Chinook Salmon 
(Oncorhynchus tshawytscha) and juvenile steelhead 
(Oncorhynchus mykiss) to the southern export 
facilities (NMFS 2009).

Because of the aforementioned restrictions, water 
managers need fast and relatively simple methods 
to accurately estimate OMR flows for short- and 
long-term operations and facility planning. A water 
balance model is an efficient and conceptually 
clear approach to meet these needs. Hutton (2008) 
developed a water balance model to estimate OMR 
flows, and provided a comparison with previously 
available statistical models (Snow 1986, unreferenced, 
see “Notes”; Ruhl et al. 2006, unreferenced, see 
“Notes”). The Hutton (2008) model is coded in the 
Central Valley reservoir operations model (CalSim II) 
for long-term planning studies, and was adopted 
by the U.S. Bureau of Reclamation and California 
Department of Water Resources (CDWR) for 
operations planning and regulatory compliance on a 
demonstration basis (USBR 2014).

Water balance models are available in the CDWR 
DAYFLOW program to describe a variety of subtidal 
flows in the Delta (CDWR 1986). Notably, a water 
balance method estimates Delta outflow to comply 
with flow requirements that the State Water 
Resources Control Board (SWRCB 1999) imposes. 
This approach, referred to as the Net Delta Outflow 
Index, neglects changes in subtidal storage in the 
Delta by assuming that inflows and outflows balance 
on a daily basis. Oltmann (1998) compared this index 
with net flows estimated by flow monitoring and 
found it to be accurate at moderate to high flows but 
less accurate at low flows. Potential sources of error 
in the water balance method were cited as effects 
of the spring–neap cycle, variability in barometric 
pressure, and uncertainty in net channel depletions, 
herein referred to as Delta NCD (Oltmann 1998). 
Although not directly mentioned by Oltmann (1998), 
measurement error is also inherent in determining 
statistically significant small net flows in the 
presence of much larger estuarine tidal flows (Jay et 
al. 1997). 

Simple water balance methods that assume a balance 
between inflows and outflows may be improved 
if changes in subtidal storage are considered. In 
addition to the spring–neap cycling and variation 
in barometric pressure Oltmann mentioned (which 
is also reported by Walters and Gartner [1985]), the 
magnitude of river inflows, regional and local winds, 
and hydraulic structure operations can also influence 
subtidal water levels. Because of the complex channel 
connectivity of the Delta, and the depth- and flow-
dependent effects of bottom friction, these subtidal 
water level forcing factors can interact to affect 
subtidal flows in non-linear ways. 

The spring–neap cycle of subtidal water level, also 
referred to as spring–neap “filling and draining” 
(e.g., Stacey et al. 2010), has been widely observed 
in estuaries (LeBlond 1979). This variability is 
associated with compound tides, and occurs at 
frequencies related to those of astronomical tidal 
constituents (Parker 2007). For example, variation at 
the frequency of the principle lunar tide (M2) minus 
the frequency of the principle solar tide (S2), referred 
to as the compound tide constituent MS, is related 
to variations in tidal range over the spring–neap 
cycle and associated changes in subtidal friction 
(Buschman et al. 2009). This constituent has the 
same frequency as the astronomical constituent 
MSf (corresponding to a period of 14.77 days), but 
is created by shallow-water hydrodynamic effects, 
not astronomical forcing. Since these hydrodynamic 
effects are generated by bottom friction, they depend 
on river flow, tidal amplitude, and the non-linear 
interactions that develop between the two (Buschman 
et al. 2009; Godin 1999). A simple description of the 
spring–neap cycle of subtidal water levels is that the 
higher flow velocities during spring tides result in 
increased friction; an increased subtidal water level 
slope is, therefore, required to transport river water 
seaward (Buschman et al. 2009). 

A related process that results in subtidal water 
level variability is Stokes drift, a landward flow 
which occurs in progressive wave systems from the 
temporal correlation between tidal currents and 
water depth (Stacey et al. 2010). This process and 
the associated compensation flow are substantial 
in the northern San Francisco Estuary (Stacey et 
al. 2010). The strength of Stokes drift varies with 
tidal amplitude; increased tidal range during spring 
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tides results in an increased landward Stokes drift 
balanced by a seaward Stokes drift compensation 
flow which, like river flow, is driven by a subtidal 
water level slope (Jay and Flinchem 1997). Like river 
flow, Stokes drift compensation flow is also impeded 
by increased friction that results in spring–neap 
variability. Furthermore, Stokes drift and Stokes drift 
compensation flow are not always in balance. Sassi 
and Hoitink (2013) found substantial landward water 
flux in periods of peak Stokes drift that corresponded 
to spring tides. When river flow is present, its 
magnitude similarly influences water levels, subtidal 
friction, and the generation of compound tides. The 
overall subtidal water level variation, therefore, 
cannot be represented solely by a harmonic analysis 
(Jay and Flinchem 1997). Hydrodynamic models 
and complex analytical models (e.g., Buschman et 
al. 2009) can estimate these effects to accurately 
predict water levels. However, Buschman et al. (2009) 
reported that the pragmatic approach Godin (1999) 
proposed, whereby subtidal water level is estimated 
as a linear function of tidal range and net river flow, 
was also able to accurately reproduce observations.

Not only do river flows influence the generation of 
compound tides, they also directly influence water 
level even in the absence of tides. Subtidal water 
level is further influenced by barometric pressure, 
local and coastal wind, and operations within the 
Delta. In South San Francisco Bay, Walters (1982) 
found that subtidal water level variations were 
generated by non-local coastal forcing, primarily 
related to barometric pressure, and that local wind 
contributed only a small amount of setup. A similar 
study by Walters and Gartner (1985) found similar 
forcings for subtidal water levels in San Pablo and 
Suisun bays. Operations that may influence water 
levels in the interior Delta include temporary barrier 
installation, diversions for the Central Valley Project 
(CVP), State Water Project (SWP), Contra Costa 
Water District (CCWD), and Delta NCD. Delta NCD is 
particularly uncertain (Siegfried et al. 2014) and may 
constitute a substantial portion of net flows during 
low inflow conditions.

The water balance model for OMR flow requires 
estimation of subtidal flow division at channel 
junctions. Observed subtidal flow division depends 
on local water surface slopes, channel geometry and 
friction, and tidal amplitude (Buschman et al. 2010). 

One reason for tidal variation is that Stokes drift and 
Stokes drift compensation flow, both of which vary 
with tidal amplitude, can be distributed unevenly in 
branching channels (Sassi et al. 2012). A portion of 
the water volume transported landward by Stokes 
drift in one channel may flow into an adjacent 
channel at a junction and return by a different 
pathway as Stokes drift compensation flow. 

Observed flow divisions at a junction can change 
dramatically from temporary barrier installation. 
A barrier is typically installed at the head of Old 
River (HOR) in the fall and spring and is intended 
to benefit migrating San Joaquin River Chinook 
Salmon. When the HOR barrier is not in place, the 
net downstream flow at the Old River–San Joaquin 
River junction predominantly travels down Old River 
at low San Joaquin flows and is split approximately 
evenly at higher San Joaquin flows. With the HOR 
barrier in place, flow into Old River is restricted, and 
about 80% of the flow continues in the San Joaquin 
River. Temporary agricultural barriers are typically 
placed at three locations (on Old River, Middle River, 
and Grant Line Canal) during the summer months in 
order to raise water levels and keep local agricultural 
intakes underwater. These structures restrict flow, but 
allow some water over and through them, altering 
local water surface slopes and affecting flow splits.

In the remainder of this paper, we propose simple 
water balance models to estimate net flows in the 
Old and Middle rivers. To develop these models, we 
define a control volume in which the only unknowns 
are the flow divisions at two junctions, variation in 
storage, and OMR flow. We perform a water balance 
for this control volume in which the independent 
variables are south Delta diversions, barrier 
installation status, and San Joaquin River flow. 
The work we present in this paper builds on that 
of Hutton (2008) by adding the effects of subtidal 
storage in the water balance, and analyzes the model 
performance in detail. We examine the assumptions 
associated with the proposed approach and suggest 
possible future improvements. 

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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Qdiv = south Delta diversions: the sum of Delta  
  exports and NCD in the control volume 
ΔV = change in water volume over time Δt

All terms in Equation 1 have units m3 s-1. Flow is 
considered positive in the seaward direction; this is 
north for most channels and west for Indian Slough. 
South Delta diversions are considered positive when 
water is removed from the control volume. 

Since long-term flow records are not available for 
Indian Slough and the San Joaquin River at Lathrop, 
we estimated them by linear regression with Qomr 
(Indian Slough), and Qvns and Qdiv (San Joaquin 
River at Lathrop), using the results of simulations 
performed with the Delta Simulation Model-2 
(DSM2). The linear regression equations can be 
expressed as

  (2)

  (3)

where a, aʹ, and bʹ are dimensionless fitting 
parameters, and c and cʹ are fitting parameters 
with units m3s-1. 

Substituting into Equation 1 results in

 
Q A Q B Q C

V
tomr wb vns wb div wb= + +

 (4)

where Awb and Bwb are dimensionless parameters, 
and Cwb has units m3s-1.

We performed two long-term DSM2 simulations, and 
used the results to estimate the fitting parameters 
in Equations 2 and 3. The first DSM2 simulation 
was historical, using observed values for boundary 
inflows and major diversions. We chose the time-
period 1990 through 2012, the longest period with 
CDWR-verified boundary flow records and input files 
available at the time of this work. From this record, 
two time-periods were excluded: Jan–Feb 1997, 
because of flooding conditions on the San Joaquin 
River around Vernalis, and Jun–Dec 2004, because of 
the Jones Tract levee failure and subsequent pump-
out. Both time-periods include anomalous flows into 
and out of the control volume that are not accounted 
for in Equation 1. The second DSM2 simulation was 
similar to the historical case, but did not include SWP 
and CVP diversions. Our intention for including this 
simulation data was to encompass a broader range of 
operational conditions in the regressions, so we could 

METHODS

Control Volume Approach to Estimating OMR Flow

We calculated OMR flow as the residual flow in 
a control volume centered on the south Delta 
(Figure 1). Flow may enter or exit the control volume 
through river channels at the San Joaquin River 
at Vernalis, the San Joaquin River downstream of 
the HOR split (near Lathrop), Indian Slough, and 
Old River and Middle River at Bacon Island. Our 
motivation for defining the control volume in this 
way was to make use of the long-term flow records 
measured by the U.S. Geological Survey (USGS) 
dating back to 1923 at Vernalis and 1987 at the Old 
and Middle rivers. A CDWR flow gage at Lathrop was 
operational between late 2004 and early 2012. 

Major diversion points from the control volume are 
the Clifton Court Forebay (SWP) intake, the Jones 
Pumping Plant (CVP), and the CCWD facilities on 
Old River and Victoria Canal. Agricultural diversion 
and return flows are estimated by CDWR at multiple 
locations throughout the control volume through 
its Delta Island Consumptive Use (DICU) model. A 
variety of climatic and landscape factors as well 
as farm-scale water management decisions (CDWR 
1995) drove the magnitude of these sources and 
sinks. Additionally, aggregate estimates of Delta 
NCD are made in real-time for compliance with net 
Delta outflow standards; these estimates are based 
on the difference between assumed Delta-wide gross 
channel depletions and real-time estimates of Delta 
precipitation, and are archived in CDWR’s DAYFLOW 
program (CDWR 1986).

Conservation of fluid volume within the control 
volume dictates that, at a given time-step, inflows 
must be offset by outflows and changes in storage.

 (1) 

where 
Qomr = combined Old and Middle River flows 
Qold = Old River flow at Bacon Island 
Qmid = Middle River flow at Bacon Island 
Qvns = San Joaquin River flow at Vernalis 
Qlrp = San Joaquin River flow downstream of  
  HOR near Lathrop 
Qind = Indian Slough flow at Old River 
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evaluate non-historical operational regimes without 
relying on extrapolation in the water balance model. 

The specific version of DSM2 used in this study was 
v8.1.2, which underwent a full recalibration effort 
in 2009 (CDWR 2013). Model flow data were output 
at Indian Slough at Old River (DSM2 channel node 
236); Old and Middle River at Bacon Island (channel 
nodes 106, 144, and 145); and the San Joaquin River 
at Lathrop (channel node 8). We tidally filtered raw 
15-minute output data using a Godin filter to obtain 
net flows, and then daily averaged them to create a 
manageable number of data points for the two full 
23-year time-series. We regressed Indian Slough 

flow against OMR flow because of their proximity 
and similarity in hydraulic behavior. We statistically 
related San Joaquin River flow at Lathrop to San 
Joaquin River flow at Vernalis by linear regression. 

At high flows, a portion of the San Joaquin River 
flow upstream of the Old River junction spills over 
an overflow weir that connects the San Joaquin River 
to Paradise Cut. Because of the presence of this weir, 
we developed relationships of San Joaquin River flow 
at Lathrop to San Joaquin River flow at Vernalis 
for multiple ranges of San Joaquin River inflow. 
We accounted for the effect of barrier operation 
on the San Joaquin River–Old River flow split by 

Figure 1 Control volume map for estimation of OMR flow. Coordinate system is UTM, Zone 10 (m).

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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obtaining different best-fit regression equations for 
filtered time-series when barriers were in place or 
absent. We considered specific cases with all barriers 
out, with the Grant Line Canal (GLC) barrier in and 
the HOR barrier out, and with the HOR barrier in. 
Because of different prevailing hydraulic conditions 
and construction designs, we treated the fall HOR 
barrier installation separately from the spring HOR 
barrier. We also included south Delta diversions in 
the regression because of their effect on local water 
surface slopes in all cases except the highest San 
Joaquin flows and when the spring HOR barrier is 
installed. 

CDWR estimated Delta island diversion and return 
flows, and provided them as DSM2 boundary 
conditions (CDWR 1995). NCD in the south Delta 
control volume consistently averaged around 20% of 
the total Delta NCD (Figure 2). 

Subtidal Water Level Analysis

The final term in Equation 1 takes into account 
changes in subtidal storage in the control volume. 
Our approach followed Godin (1999), who estimated 
a linear effect of river flow on subtidal water level in 
addition to a periodic spring–neap influence. A linear 
effect of barometric pressure, acknowledged by Godin 
(1999) to have a significant effect on subtidal water 
level, was also included, resulting in: 

  (5)

where η0 is the subtidal water level in m, Ni is the 
number of compound tidal constituents fit, Ai is 
the amplitude of the ith tidal constituent, si is the 
frequency of the ith constituent in radians day-1, 
φi is the phase of the ith constituent in radians, 
Qinflow is Delta inflow in m3s-1, P is barometric 
pressure in millibars, a0 is a fitting parameter in 
m-2s, b0 is a fitting parameter in m millibars-1, 
and c0 is a fitting parameter in m. 

Figure 2 Net channel depletions (NCD) within the south Delta control volume (see Figure 1), as a percentage of total Delta NCD
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We determined the empirical coefficients by fitting 
Equation 5 to water level records predicted by the 
DSM2 simulations at Old River at Bacon Island using 
a nonlinear least squares optimization approach 
(Levenberg 1944). While b0 is known in theory and 
may be specified a priori by assuming hydrostatic 
pressure, Walters (1982) reported that the effect of 
barometric pressure observed on south San Francisco 
Bay subtidal water level is greater than expected. 
Therefore, this parameter was determined by fitting. 
We obtained pressure data from NOAA Station 
9414290, located on the south side of the Golden 
Gate inlet. We supplemented this data series with 
measurements from the San Francisco International 
Airport before 1996, and where data gaps in the 
NOAA record existed. We developed the Delta inflow 
record by summing daily river inflows provided as 
DSM2 boundary conditions. Using a wind record 
from NOAA Station 9415144 we found wind effects 
to be negligible based on a correlative analysis of 
wind speed and stress components to the DSM2-
modeled water level. We note here that wind effects 
in DSM2 are accounted for implicitly through the 
use of observed stage data at Martinez for the water 
surface boundary condition, but no explicit wind 
surface stress is applied in DSM2. Therefore, we 
performed an additional correlative analysis using 
wind velocity components and USGS-observed 
subtidal water level at the Old River at Bacon Island 
station. A small correlation was found with east–west 
wind, indicating slightly increased water level with 
increased westerly wind. The effect was not large 
enough to justify the inclusion of wind effects in 
Equation 5.

Before fitting, a power spectrum analysis of water 
levels indicated three distinct amplitude peaks at 
periods greater than 25 hours, corresponding to the 
shallow water interactions of the K1 and O1 tides 
(constituent KO, period 328 hours), the M2 and S2 
tides (constituent MS, period 354 hours), and the 
M2 and N2 tides (constituent MN, period 661 hours). 
Therefore, three amplitudes (Ai) and three phases (φi) 
were determined in Equation 5. For convenience the 
time origin (time = 0 days) of the estimated phases 
was taken to be Jan 1, 1900 at 00:00 in Pacific 
Standard Time (PST). 

Equation 5 does not consider nodal factors to 
account for variations in tidal amplitude during the 

18.61-year lunar node cycle. These node factors 
are important for the primary astronomical tidal 
constituents but are more ambiguous for compound 
tides. For simplicity, we neglect them here. To 
examine this assumption, we performed a harmonic 
analysis using the Vtide tidal harmonic analysis 
and prediction package (Foreman et al. 2009). We 
ran the Vtide package in analysis mode to calculate 
amplitudes for the spring–neap constituents. We then 
isolated these (all other tidal constituent amplitudes 
were set equal to zero) and the Vtide package was 
run in prediction mode to construct a water surface 
elevation time-series reflecting only the spring–neap 
tidal cycle. The improvement in fit to subtidal water 
level using Vtide was negligible, so we retained 
Equation 5 for conceptual simplicity and to allow 
simultaneous fitting of water level as a function 
of compound tides, Delta inflow, and barometric 
pressure. 

The specific water surface elevation time-series 
used for the harmonic analysis was a 23-year 
(1990 through 2012) DSM2-predicted stage record 
at the Old River at Bacon Island station. We tested 
other locations throughout the control volume, and 
found results at this station similar to results at 
other stations located downstream of the temporary 
agricultural barriers. We analyzed the DSM2 stage 
time-series instead of the observed USGS stage at 
that location because of its long-term record without 
the complications of missing data. 

We converted the subtidal water level predicted using 
Equation 5 to water volume using a relationship 
derived from a hypsographic curve of the southern 
Delta control volume: 

 V = 14.916 × 106 * η0 + 28.845 × 106 (6)

where V is the water volume in m3 and η0 is water 
surface elevation in m, NAVD88. 

This approach implicitly assumes that subtidal water 
level is constant through the control volume. 

The bathymetry data we used to derive this 
relationship were aggregated by CDWR from multiple 
bathymetric surveys (Wang and Ateljevich 2012). 
We calculated change in storage using centered 
differences. 

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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A Direct Fit Approach to the Water Balance Model

The water balance method as presented is 
conceptually clear and founded on physical 
principles, including discrete configurations of the 
physical system (e.g., barrier installation or channel 
connectivity) and subtidal storage in the control 
volume. We performed separate statistical regressions 
for Equations 2, 3, and 5, which we then substituted 
into Equation 1 to obtain Qomr predictions for 
different flow and barrier installation cases. We did 
not fit the subtidal storage parameters to match Qomr 
directly, but to match a subtidal water level record, 
which we then converted to storage volume using 
Equation 6. Eighteen parameters are present before 
subtidal storage is considered, and we introduce an 
additional nine parameters to account for subtidal 
storage. 

An alternative approach is to fit parameters to 
directly optimize the fit to OMR flow instead of 
developing regressions at individual junctions. In 
this direct fitting approach, nonlinear optimization 
of a single equation is used to estimate all relevant 
parameters. To derive this equation, we substituted 
Equations 2, 3, 5, and 6 into Equation 1, and 
combined parameters. We incorporated the effect 
of Paradise Cut by inclusion of a threshold flow 
at Vernalis, above which the slope of the Qomr  
dependence on Qvns changes. This guarantees a 
continuous relationship between Qomr and Qvns. We 
represented barrier effects as stepwise changes in the 
slope of the relationship between Qvns and Qomr . The 
resulting equation is:

  (7)

where A, Aʹ, B, AS, Af, Ag, are dimensionless 
fitting parameters, Aiʹ and φiʹ are the unknown 
amplitudes in m3s-1 and phases in radians of 
the compound tide constituents, a1 is a fitting 
parameter in days, b1 is a fitting parameter in 
m3s-1 millibars-1 day, and C and D are fitting 
parameters in m3s-1. 

Is , If , and Ig are indicator functions for different 
barrier operations. Is takes a value of 1 during 
periods of spring HOR barrier installation and zero 

otherwise. If is the analogous indicator function for 
fall HOR barrier installation, and Ig is the indicator 
function for periods when only the GLC barrier is 
installed. OMR flows related to subtidal changes 
in control volume storage now depend directly on 
changes in Delta inflow and atmospheric pressure.

We made several simplifications in the derivation 
of Equation 7. We neglected terms, including 
barrier indicator function effects on the slope of the 
relationship between Qomr  and Qdiv, and considered 
only one breakpoint in the slope of the Qvns and 
Qomr  relationship. These simplifications reduced 
the number of fitting parameters from 27 to 16 by 
removing terms implicitly included in Equations 2 
and 3, which are expected to have small effects 
on the OMR flow prediction. We fit the parameters 
of Equation 7 using the differential evolution 
optimization approach (Storn and Price 1997).

Model Performance Metrics

We compared predictions from the water balance 
approach and the DSM2 hydrodynamic model to 
USGS observed OMR flow. We obtained 15-minute 
discharge data directly from the USGS in April 2015 
for the Old River at Bacon Island (USGS station 
number 11313405) and Middle River at Middle River 
(11312676) stations. We tidally filtered these data 
using a Godin filter and then daily-averaged them. 
Both records include periods during which a sensor 
was malfunctioning and no data were recorded. We 
generated a more complete record by developing a 
piecewise linear regression between the two stations 
and using it to fill in missing data. We also excluded 
from the regression analysis periods excluded from 
the DSM2 analysis for the same reasons. To account 
for different prevailing hydraulic conditions during 
strongly negative flows, we used a piecewise linear 
relationship (Figure 3). We determined the slopes 
and location of the breakpoint using the differential 
evolution non-linear optimization method (Storn and 
Price 1997). 

We compared predicted and observed data on both 
a 5-day and 14-day running-average basis. For 
the empirical models, we used period averages of 
San Joaquin River flow at Vernalis and south Delta 
diversions to compute average OMR flow. For DSM2, 
we averaged predicted OMR flow over the period. 
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The purpose of this averaging was to examine the 
accuracy of each method without the additional 
scatter caused by large day-to-day flow variations. 
Additionally, both averaging periods are important 
in regulatory contexts, including the Reasonable and 
Prudent Actions under the USFWS and NMFS long-
term biological opinions. 

RESULTS

Statistical Relationships for Ungaged Control 
Volume Flows

The relationship between Indian Slough and OMR 
flow is shown in Figure 4A. Subtidal Indian Slough 
flow averages about 6% of OMR flow. An implication 
of this is that a slightly less than 1:1 relationship 
exists between negative OMR flows and the 

magnitude of south Delta diversions. An improved 
regression could be developed by accounting for 
the effect of local NCD in Indian Slough (Hutton 
2008). However, the local diversion term is omitted 
for simplicity and because its contribution to the 
accuracy of the Indian Slough flow estimate little 
affects the estimate of OMR flow. 

The relationship between San Joaquin River flow 
at Vernalis and Paradise Cut is shown in Figure 4B. 
There is a change point in the relationship at 
467 m3s-1 (16,500 ft3 s-1) when flow begins to spill 
over the overflow weir that connects the San Joaquin 
River to Paradise Cut. At 818 m3s-1 (28,900 ft3s-1), 
expansions in the San Joaquin River flow area and 
the geometry of the weir lead to smaller increases in 
Paradise Cut flow with increases in San Joaquin flow. 
We determined the exact location of these change 

Figure 3 Observed flow at USGS Old River at Bacon Island station as a piecewise linear function of observed flow at USGS Middle River at 
Middle River station

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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Figure 4 DSM2-predicted flow correlations and best-fit lines. (A) Indian Slough and combined OMR flow. (B) Paradise Cut and San Joaquin 
flow at Vernalis. Vertical lines are shown at Qvns = 467 m3 s-1, where the overflow weir into Paradise Cut begins to spill, and Qvns = 818 m3 s-1, 
where river and weir geometry cause a change in slope.

A

B
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points by fitting a piecewise linear function to the 
data using a non-linear least squares optimization 
method (Levenberg 1944). The resulting relationship 
forms the basis for different Qvns—Qlrp regressions 
based on San Joaquin River flow. During high flow 
conditions when Paradise Cut is active, the temporary 
barriers are typically not installed because of 
concerns of localized flooding. 

Figure 5 shows the effect of different barrier 
configurations and diversion levels on the San 
Joaquin–Old River flow split. Figure 5A shows the 
effect of the head of Old River (HOR) barrier. For 
San Joaquin flows at Vernalis below 468 m3s-1, an 
approximately even flow split occurs when the HOR 
barrier is not installed. When the barrier is installed, 
flow into the Old River is restricted and San Joaquin 
River flow past Stockton is higher for a given San 
Joaquin River flow at Vernalis. The magnitude 
of this effect differs between the spring and fall 
barrier installations; a “full” barrier implementation 
is typically installed in the spring, and a “partial” 
barrier is typically installed in the fall. 

During periods when the HOR barrier is not installed, 
the GLC barrier affects the San Joaquin–Old River 
flow split (Figure 5B). When the GLC barrier is 
installed, it raises water levels in the south Delta, 
which influence the water surface slope near the 
junction and cause more water to flow down the 
San Joaquin River. All of the temporary agricultural 
barriers are usually installed and removed within a 
month of one another. Limited data during periods 
when the GLC barrier was installed and the Old and 
Middle river barriers were not installed suggests that 
the GLC barrier has a much larger effect on the split 
than either of the other two. The GLC barrier is also 
closer to the junction (~14 river km) than the Old 
River (~29 river km) or Middle River (~26 river km) 
barriers. For these reasons, the installation of the 
GLC barrier is treated as a different case in the Qvns—
Qlrp regressions while the remaining agricultural 
barriers are not. 

When neither the HOR barrier nor the Grant Line 
Canal barrier is installed, south Delta diversions 
noticeably influence the San Joaquin River–Old 
River flow split (Figure 5C). As diversions increase, 
more flow is pulled into the Old River channel from 
the San Joaquin River. At very low Vernalis flows, 

diversions may even cause reverse flows in the San 
Joaquin River downstream of HOR. The influence 
of diversions on the flow split is also important 
for low San Joaquin River flow conditions during 
which the fall HOR barrier or the GLC barrier are 
installed (dependence not shown in Figure 5), and we 
considered this influence for the regression analysis. 
At higher San Joaquin River flow conditions, the 
influence of south Delta diversions on the flow split 
is less important. 

Table 1 gives the resulting Qlrp regressions for 
different barrier configurations and Qvns flow 
thresholds. Figure 6 compares the statistical model for 
San Joaquin River flow downstream of HOR to the 
DSM2 model results upon which it was based, and 
observed data at Lathrop (a CDWR-operated gage) 
and Garwood Bridge (a USGS-operated gage located 
approximately 18 river km downstream of HOR). 
The statistical model lines up almost exactly with 
the DSM2 data, and compares well to the two sets of 
observed data. The model suggests that a 100 m3s-1 
increase in south Delta diversion results in (at most) 
a 2.93 m3s-1 decrease in San Joaquin River flow 
downstream of HOR and a commensurate increase in 
Old River flow. We algebraically combined the San 
Joaquin River flow downstream of HOR regressions 
with the Indian Slough correlations in Equation 1 to 
create a model for OMR flow without the change in 
storage term. These coefficients are given in Table 2. 

Error metrics for DSM2 and the water balance model 
in predicting observed OMR flow are presented 
in Figure 7 and Table 3. DSM2 shows the highest 
accuracy, with 71% of 5-day-average predictions 
falling within ±15 m3s-1 (530 ft3 s-1) of observed. 
The water balance approach without subtidal flow 
has 65% of predictions falling within ±15 m3s-1. 
Both methods are off by greater than 35 m3s-1 
(1,200 ft3s-1) only a small percent (1% to 4%) of the 
time. DSM2 predictions are generally more negative 
than observed, with 61% of model predictions having 
a negative residual. The water balance approach 
is not as biased, with 46% of predictions having a 
negative residual. When comparing to observed data 
on a 14-day-average basis, the short-term variations 
in subtidal storage are averaged out, and the water 
balance model without subtidal storage approaches 
DSM2 accuracy. 

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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Figure 5 Dependence of DSM2-modeled San Joaquin River flow downstream of HOR on San Joaquin flow at Vernalis under different barrier 
configurations and diversion levels. (A) Effect of the HOR barrier; (B) Effect of the GLC barrier for times when the HOR barrier is not installed. 
When the GLC barrier is installed, the presence or absence of the other barriers have only a minor effect. (C) Effect of diversions for times 
when the HOR barrier and GLC barriers are not installed.

A

B

C
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Figure 6 Comparison of methods to estimate San Joaquin River flow downstream of HOR. DSM2 model and the statistical model given in 
Table 1 are compared against observed flow measured at Lathrop and Garwood Bridge

Table 1 Statistical model constants for San Joaquin River flow downstream of HOR: Qlrp = a*Qvns + β*Qdiv + γ. N is the number of points 
used in the regression. R 2 is the coefficient of determination. SE is the standard error of the estimate. R 2 and standard error are computed in 
comparison to calculated DSM2 flow values. 

Qvns 
(m3 s-1) HOR barrier GLC barrier

a 
(–)

β 
(–)

γ 
(m3 s-1) N R 2

SE 
(m3 s-1)

< 467 Out Out 0.501 - 0.0293 - 4.7 9952 0.996 0.1

467–818 Out Out 0.260 0 100.0 636 0.991 0.6

> 818 Out Out 0.338 0 38.3 98 0.956 6.6

All In (fall) In/Out 0.736 - 0.0132 - 0.9 1358 0.960 0.2

All In (spring) In/Out 0.890 0 - 5.5 780 0.959 0.7

All Out In 0.522 - 0.0211 0.7 3432 0.976 0.1

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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Subtidal Water Level Analysis

We calculated the amplitudes for the MS, MN, and 
KO spring–neap tidal constituents at the Old River 
at Bacon Island as 0.043 m, 0.026 m, and 0.047 m, 
respectively. Their phase lags, relative to Jan 1, 
1900 at 00:00 PST, were 0.314 rad, 1.531 rad, and 
2.880 rad. Estimated values for a0, b0, c0 and were 
0.0001 m-2s, -0.0123 m millibar-1 and 13.67 m, 
respectively. 

We examined the suitability of Equation 5 as a model 
equation. To confirm substantial effects of river flow 
and atmospheric pressure, we fit each parameter 
individually. After we fit subtidal harmonic 
variability (the summation term in Equation 5), we 
compared the residual subtidal water level to Delta 
inflow (Figure 8A); a strong correlation (R2 = 0.556) 
was found. After fitting both harmonic and flow 
variability, we then compared the residual subtidal 
water level to barometric pressure (Figure 8B), and 
found a similarly strong correlation (R2 = 0.388), 
indicating that both Delta inflow and pressure were 
suitable in Equation 5. Figure 8C shows the DSM2-
predicted and Equation 5-predicted subtidal water 
level for a representative year of the 23-year period. 
Each term of Equation 5 is added incrementally and 
has a significant effect on the estimated subtidal 
water level. The standard error of the estimated 
water level is 0.132 m when we considered only tidal 
harmonic variability, 0.088 m when we considered 
tidal harmonic variability and the Delta inflow effect, 
and 0.069 m for the complete Equation 5 including 
the barometric pressure effect. Several alternative 
parameters were considered, including natural 

logarithm and power law expressions for flow effects, 
regional and local wind, and south Delta diversions. 
None of these produced a substantial improvement in 
subtidal water level fit. 

We used Equation 6 to convert the subtidal water 
levels predicted by Equation 5 to control volume 
storages and differenced them to calculate the 
final flow term in Equation 1. Table 3 and Figure 7 
show results from the water balance model with 
the inclusion of the subtidal storage term. Five-
day-average model accuracy within ±15 m3 s-1 is 
improved 3% to 68%, and standard error is reduced 
in all cases except for the highest San Joaquin flows. 
Fourteen-day-average model accuracy is very close 
to the water balance method without the inclusion 
of subtidal storage, since the change in storage term 
approaches zero as longer averaging periods are 
considered. 

Direct Fit Water Balance Approach

Table 4 shows the parameters estimated by the direct 
fit optimization approach. Fitted slopes for the Qomr 
dependence on Qvns and Qdiv are similar to those 
derived for the incremental (multiple step) fit water 
balance model described previously. We also found a 
similar flow cutoff (parameter D in Equation 7) and 
change in Qomr  dependence on Qvns at high flows. 

Table 3 and Figure 7 suggest that the direct fitting 
approach, despite having a reduced set of parameters 
(16 instead of 27), has similar accuracy to the 
incremental fitting approach. The least accurate 
predictions were for periods with GLC barrier 
installation. In contrast to the incremental fit water 
balance, the direct fit, similar to DSM2, showed a 
tendency to underpredict OMR flows. 

DISCUSSION

Quantitatively, the most important improvement we 
present over previous statistical models of OMR flow 
is the development of distinct flow division ratings 
for conditions with and without barrier operations. 
We found that ratings for the San Joaquin River–Old 
River junction varied with San Joaquin River flow 
and south Delta diversions, and could be represented 
well by piecewise linear functions. We also found 
that linear and continuous piecewise linear fits 

Table 2 OMR water balance model constants without change in 
control volume storage term: Qomr = Awb * Qvns + Bwb * Qdiv + Cwb

Qsjr 
(m3 s-1)

HOR  
barrier

GLC  
barrier

Awb 
(–)

Bwb 
(–)

Cwb 
(m3 s-1)

< 467 Out Out 0.471 - 0.915 6.8

467–818 Out Out 0.698 - 0.943 - 92.1

> 818 Out Out 0.624 - 0.943 - 33.8

All In (fall) Out 0.249 - 0.931 3.2

All
In 

(spring)
Out 0.104 - 0.943 7.6

All Out In 0.451 - 0.923 1.7
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Figure 7 Comparison of OMR estimation method to USGS-observed data: (A) DSM2, (B) water balance model without the subtidal storage 
term, (C) water balance model with the subtidal storage term, and (D) direct-fit water balance model. For each method (A-D), the lower plot 
shows paired data points and 1:1 line. Upper plots show the binned predicted minus observed differences. Results are compared on a 5-day-
average basis.

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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Figure 8 (A) Residual in south Delta subtidal water levels predicted by Equation 5 using only harmonic factors. Correlation between the 
residual and Delta inflow is shown. (B) Residual subtidal water levels predicted by Equation 5 using harmonic and Delta inflow dependence. 
Correlation between the residual and barometric pressure is shown. (C) 1 year of subtidal water levels observed by the USGS and predicted 
by both DSM2 and Equation 5. The blue line shows fitting using only the harmonic variability. The green line also includes the effect of Delta 
inflow, and the red line is the full Equation 5, including the effect of barometric pressure.

A

B

C
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by Gaspar and Ponte (1997) who found substantial 
correlations between wind-driven sea level variation 
and barometric pressure. Walters (1982) also reported 
a stronger than expected barometric pressure effect in 
south San Francisco Bay, consistent with our fitting 
results.

Significant error (a standard error of 0.069 m) 
remains in estimating the subtidal water level 
predicted by DSM2. Part of this error is likely from 
the simple relationships used to represent complex 
interactions between river flow and tidal flow. In 
addition, the Delta is a highly modified environment, 
and anthropomorphic effects are significant. The 
detailed timing of operations at Clifton Court Forebay 
and Jones Pumping Plant is not currently accounted 
for in the water balance approach, which uses daily-
average boundary conditions. Furthermore, even if 
the subtidal water level in Old River at Bacon Island 
were predicted perfectly, other sources of error 
would remain in predicting subtidal storage. One 
is the assumption that the water level in Old River 
at Bacon Island represents water level in the south 
Delta. This appears to be a good first approximation, 
but some landward regions of the control volume are 
more fluvially influenced than Old River at Bacon 
Island, and areas near the southern export locations 
may experience more water level drawdown. A more 
accurate relationship between subtidal water level 
and volume derived, for example, from regressing 
control volume storage obtained from DSM2 to 
subtidal water level, could improve the storage 
estimate. The main advantage of using the DSM2 

provided a good approximation of the DSM2-
predicted flows. There is evidence of a spring–neap 
signal in the flow residuals (the difference between 
DSM2 predicted flows and flows predicted by flow 
division regressions) at Indian Slough in particular. 
This is consistent with the finding of Sassi and 
Hoitink (2013) that Stokes drift and the Stokes 
compensation flow can be distributed unevenly in 
individual channels; one channel can feed water 
volume from Stokes drift into Stokes compensation 
flow in an adjacent channel. This spring–neap 
cycle can be substantial in some tidal rivers, but 
the flow residual at Indian Slough is typically less 
than 5 m3 s-1 (Figure 4), suggesting that spring–neap 
effects in the relationship of OMR flow to flow at this 
location are weak.

Accounting for changes in subtidal storage in the 
south Delta control volume improves the prediction 
of subtidal OMR flow (Table 3). We found tidal 
harmonic variability in subtidal water level to depend 
primarily on three compound tide constituents, 
similar to studies in other estuaries (Godin 1999). 
Significant additional variability in water level 
is contributed by Delta inflow and barometric 
pressure. We represented each of these effects with 
a linear relationship, following Godin (1999). The 
estimated coefficient of proportionality for water 
level variability with barometric pressure, b0, was 
0.0126 m millibar -1, similar to the 0.01 m millibar -1 
expected from the “inverted barometer” effect (Gaspar 
and Ponte 1997). Large variation from the expected 
value of 0.01 m millibar -1 with latitude was reported 

Table 3 Standard error of OMR flow models. Predictions are compared to USGS observed data using 5-day/14-day running averages. Units 
are m3 s-1.

Qvns 
(m3 s-1) HOR barrier GLC barrier N

5-day/14-day average model standard error

DSM2

Water balance 
w/o subtidal 

storage
Water balance w/ 
subtidal storage

Direct fit water 
balance

< 467 Out Out 4919 13.1 / 11.1 15.4 / 11.8 14.2 / 11.4 14.3 / 11.4

467 – 818 Out Out 315 16.3 / 12.9 20.8 / 14.6 19.9 / 14.4 19.0 / 13.9

> 818 Out Out 48 25.5 / 23.7 28.8 / 23.7 29.7 / 24.8 29.6 / 24.5

All In (fall) In/Out 670 12.9 / 10.7 14.8 / 11.7 14.1 / 11.7 14.1 / 11.6

All In (spring) In/Out 384 14.3 / 11.9 15.9 / 11.6 14.7 / 11.5 14.5 / 11.5

All Out In 1665 14.2 / 12.8 15.3 / 13.1 14.7 / 13.1 15.4 / 13.8

All All All 8001 14.2 / 12.3 16.5 / 13.2 15.6 / 13.0 15.8 / 13.3

http://dx.doi.org/10.15447/sfews.2016v14iss2art2
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hydrodynamic model instead of the proposed water 
balance approach is improved prediction of storage 
in the south Delta. 

The water balance approach of applying known 
flows and estimating unknown flows into the control 
volume using Equations 2 and 3 is conceptually 
clear. But noting that the individual regressions 
are then substituted into Equation 4, and that 
Equations 5 and 6 can also be substituted into 
Equation 4, a single equation can be derived and 
directly optimized to fit observed or predicted OMR 
flow. This approach allows all parameters to be fit in 
a single optimization step instead of through a series 
of linear regressions. 

Equation 7 has conceptual advantages compared 
to the incremental (multiple-step) fitting approach. 
Notably, this single equation shows the effect 
of all relevant parameters. The barrier effects 
can immediately be seen to be represented by a 
change in slope in the relationship of Qomr to Qvns . 
In addition, the relationship of Qomr to Qvns  is 
continuous in Equation 7, while the incremental 
fitting approach has discontinuous relationship at 
two values of Qvns . Table 3 indicates that despite 
several simplifications introduced in Equation 7, 

which decrease the total number of parameters from 
27 to 16, the overall standard error of the OMR 
flow predictions differs little from the incremental 
fitting approach. These simplifications include a 
single change in slope of Qomr to Qvns  (as opposed 
to the two changes used in the incremental fitting) 
and barrier effects which were assumed to alter the 
Qomr to Qvns  relationship but not Qomr to Qdiv . The 
performance of the simplified approach supports 
the assumption that the primary effect of varied 
barrier and flow conditions is change in the slope of 
the relationship of Qomr to Qvns . However, because 
the least accurate predictions of Equation 7 are for 
conditions with the GLC barrier, we conclude that 
the GLC barrier has some influence on the slope of 
the relationship between Qdiv and Qomr . A sensitivity 
test indicates that adding one additional parameter 
to represent this slope change can indeed slightly 
improve overall accuracy. However, since the 
difference was not large, we retained Equation 7 for 
conceptual simplicity. 

Though the water balance approach can still be 
improved, the methods we present here are accurate. 
The water balance approach is a marked improvement 
over previous empirical approaches (evaluated in 
Hutton 2008), and we recommend its adoption 
in place of those currently in use. Its accuracy in 
predicting 5-day-average OMR flows approaches that 
of DSM2 and does not require a full hydrodynamic 
simulation of the Delta. Practically, the regressions 
in Table 2 provide a straightforward approach for 
managers to estimate OMR flows. The incorporation 
of the subtidal flow term requires more information, 
including forecasts of Delta inflow and barometric 
pressure, but these forecasts are typically available, 
and the subtidal flow can be readily estimated using 
Equations 5 and 6. 

Because the errors shown in Figure 7 are 
approximately Gaussian, confidence intervals can 
be estimated using the standard errors shown in 
Table 3. The water balance approach is less accurate 
in predicting OMR flows during high San Joaquin 
inflow conditions. This is largely a result of error in 
predicting the Old River–San Joaquin River flow split. 
At more typical San Joaquin River inflows the 5-day-
average standard error in the water balance estimate, 
without the subtidal flow term, is approximately 
16.5 m3 s-1, indicating that OMR flows can be 

Table 4 Direct fit water balance statistical model constants 

Parameter Units Value

A — 0.476

D m3 s-1 446

Aʹ — 0.210

B — - 0.910

As — - 0.291

Af — - 0.388

Ag — - 0.132

AʹMS m3 s-1 3.62

AʹMN m3 s-1 1.57

AʹKO m3 s-1 4.94

φʹMS radians 0.0271

φʹMN radians 1.36

φʹKO radians 2.83

a1 day - 0.00949

b1 m3 s-1 millibars-1 day 1.39

C m3 s-1 0.392
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predicted with 95% confidence to within ± 33 m3 s-1. 
The inclusion of the subtidal flow term narrows the 
confidence interval to approximately ± 31 m3 s-1. 

The proposed approach of analyzing flow divisions 
and accounting for subtidal storage has broad 
applicability to the Delta. We can readily envision 
several applications. One is to improve Delta outflow 
estimates by accounting for subtidal storage in the 
Delta. Another is checking the accuracy of estimated 
subtidal flow at monitoring stations by forming 
control volumes and accounting for subtidal storage 
within these volumes. This procedure could identify 
flow stations that require improved calibration, and 
quantify the uncertainty of observations. This would 
be particularly useful for calibrating hydrodynamic 
models. A demanding application that would only 
be possible with a highly accurate flow observation 
network is estimation of south Delta NCD using a 
water balance approach that incorporates observed 
flows and estimated storage. 
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