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Genomic technologies show great potential for classifying
disease states and toxicological impacts from exposure to
chemicals into functional categories. In environmental monitoring,
the ability to classify field samples and predict the pollutants
present in these samples could contribute to monitoring efforts
and the diagnosis of contaminated sites. Using gene expression
analysis, we challenged our custom Daphnia magna cDNA
microarray to determine the presence of a specific metal toxicant
in blinded field samples collected from two copper mines in
California. We compared the gene expression profiles from our
field samples to previously established expression profiles
for Cu, Cd, and Zn. The expression profiles from the Cu-containing
field samples clustered with the laboratory-exposed Cu-
specific gene expression profiles and included genes previously
identified as copper biomarkers, verifying that gene expression
analysis can predict environmental exposure to a specific
pollutant. In addition, our study revealed that upstream field
samples containing undetectable levels of Cu caused the
differential expression of only a few genes, lending support
for the concept of a no observed transcriptional effect level
(NOTEL). If confirmed by further studies, the NOTEL may play
an important role in discriminating polluted and nonpolluted sites
in future monitoring efforts.

Introduction
Since the inception of toxicogenomics, ecotoxicologists have
proposed ways to integrate genomics into environmental
monitoring, chemical screening, and risk assessment (1).
These applications depend on the ability to classify the
biological responses caused by chemicals into groups based
on the gene expression, protein expression, or metabolomic

signature. In medicine, initial studies proved that classifica-
tion of cancer types was possible based on their gene
expression profile (2), leading to the development of mi-
croarray based tests that are now used clinically to predict
cancer prognosis (3). Toxicological studies have also shown
the ability to classify chemicals and predict their mode of
toxicity on the basis of their gene expression profiles (4).

One of the first obstacles facing the integration of
genomics into ecotoxicology was establishing that ecologi-
cally relevant organisms respond to different chemicals by
producing chemical specific expression profiles. Recent
studies demonstrate that model ecotoxicology organisms
exposed to pollutants in the laboratory produce a distinctive
expression pattern for each chemical related to a similar mode
of action. For example, gene expression patterns are dis-
cernible in Chironomus tentans exposed to DDT, phenan-
threne, fluoranthene, Cd, Cu, and Zn (5); in Daphnia magna
exposed to Cu, Cd, and Zn and organic pollutants (6, 7) and
in rainbow trout exposed to a variety of toxicants (8). In
another study examining the potential applications of
genomics in field monitoring, clean and contaminated field
sites were successfully discriminated through gene expression
analysis in European flounder (9).

Although the previous examples illustrate the feasibility
of applying genomics to ecotoxicology, the bridge connecting
a genomic response to a specific environmental exposure
has not yet been built. This study is the continuation of our
work to establish and validate gene expression profiles for
Cu, Cd, and Zn in Daphnia magna. In a companion paper,
we reported gene expression profiles for these metals over
a range of nontoxic and toxic concentrations and showed
that a concentration exists corresponding to a no observed
transcriptional effect level (NOTEL) (10). We next challenged
our D. magna microarray to discriminate between polluted
and nonpolluted field samples using the theory of the NOTEL
and predict the contaminant present in the polluted samples.
Using clustering analysis and class prediction algorithms we
successfully predicted Cu as the primary pollutant responsible
for toxicity in blinded field samples and found very few genes
differentially expressed in the nonpolluted sites.

Materials and Methods
Site Selection and Characterization. To determine the
potential of gene expression analysis as a biomarker of metal
pollution, we chose two locations in California where Cu
was suspected to be the primary pollutant in the surface
waters. Our first location, Walker Mine, located on the eastern
side of the Sierra-Nevada Mountains, is an abandoned copper
mine where Cu contamination has been a long standing
environmental problem for two streams in proximity to the
mine, Dolly Creek, and Little Grizzly Creek (see map in the
Supporting Information, Figure S1A). Dolly Creek receives
mine drainage directly from the mine portal and flows
through the mine tailings where a legacy of ore processing
has left behind Cu contamination. Dolly Creek flows into
Little Grizzly Creek, bringing its Cu load with it. The second
location, Greenhorn Mine, located in Northern California
west of Lake Shasta, is an abandoned mine with no
remediation history (see map in the Supporting Information,
Figure S1B). Acid mine drainage seeps from the mine at
several locations and enters Willow Creek below. The acidic
pH is diluted and neutralized by Willow Creek (see the
Supporting Information, Table S2); however, the Cu in the
mine drainage remains mobilized, contaminating the creek.

Field Sample Collection. Field samples were collected
on August 24, 2006, from Walker Mine and on August 25,
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2006, from Greenhorn Mine. At each location, four sites were
chosen for sampling on the basis of their accessibility and
the predicted copper concentrations. One site was chosen
upstream from the mine portal. Figure S1 in the Supporting
Information shows the sampling sites for Walker Mine (A)
and Greenhorn Mine (B) and Tables S1 and S2 in the
Supporting Information give the GPS coordinates for each
sampling site, taken using a Garmin eTrex Vista GPS unit. At
each site, two four liter grab samples of water were collected
in 4 L fluorinated HDPE (high-density polyethylene) bottles.
At the time of sampling, pH, conductivity, and temperature
were measured in the stream using a Hanna HI99130
multiparameter meter. Dissolved oxygen (DO) was measured
using a Fisher Scientific traceable digital oxygen meter.
Results of the water quality parameters are given in Tables
S1 and S2 in the Supporting Information. All samples were
stored on ice until returning to UC Berkeley, where they
were transferred to 4 °C until use.

Determination of Dissolved Metal Concentrations. After
collecting grab samples, three aliquots were removed from
the 4 L grab samples and filtered through a 0.45 µm filter on
site for dissolved metal analysis. Trace metal grade HNO3

(Fisher Scientific, Pittsburgh, PA) was added to a final
concentration of 1.5%. Metal concentrations were determined
by inductively coupled plasma mass spectrometry (ICP-MS)
using EPA method 200.8 (11) at California Laboratory Services,
Rancho Cordova, CA. The dissolved metal concentrations
averaged for the three replicates are given in Table S3 in the
Supporting Information with standard deviation.

Determination of Dissolved Organic Carbon (DOC)
Concentrations. One hundred milliliter samples were re-
moved from the field sample bottles and filtered through a
0.45 µm nitrocellulose filter (Millipore, Billerica, MA) to
remove particulate carbon. Three 25 mL aliquots were
collected from the filtrate for DOC analysis. DOC analysis
was performed on a 1010 total organic carbon analyzer (O.I.
Analytical, College Station, TX). Potassium hydrogen ph-
thalate (Acros Organics, Geel, Belgium) was used as a
standard, producing a standard curve with an R2 value of
0.9991. Each sample was analyzed twice with three replicates
from each site. DOC concentrations were averaged for the
three replicates and reported in Tables S1 and S2 in the
Supporting Information. DOC analysis of filtered Milli-Q
water confirmed no DOC contamination was introduced
during filtering.

Acute Toxicity Assays. Daphnia magna culture mainte-
nance was described previously (6) and is also available in
the Supporting Information. Acute toxicity assays were
conducted according to the U.S. EPA whole effluent toxicity
(WET) protocol (12). First, the toxicity of the undiluted field
samples was assessed. First instar D. magna were placed in
25 mL of either culture media or undiluted field sample.
Following a 24 h exposure, the number of survivors was
determined as those remaining mobile. For the two samples
causing acute lethality, GM_DE and GM_DS1, three dilutions
(50, 25, and 12.5%), an undiluted sample (100%) and a media
control were used to determine the toxicity of the field
samples. The dilutions were made with modified COMBO
media. Following a 24 h exposure, the number of survivors
was counted to determine the dilution required to remove
acute lethality.

Chronic Toxicity Assay. Static renewal chronic toxicity
assays were conducted using protocols similar to the U.S.
EPA chronic toxicity WET protocol (13). Ten first instar D.
magna were each placed in 25 mL of media containing
concentrations of copper sulfate (Fisher Scientific, Hampton,
NH) equal to the 1/10 LC50 (6 µg/L), the NOECacute (no
observable effect concentration) (30 µg/L), or a zero con-
centration control (toxicity end points were reported previ-
ously (10)). The chronic toxicity of the Walker Mine field

samples was measured using 25 mL of undiluted field sample.
Over the next 21 days, shed exoskeletons (as evidence of
molting) and the number of offspring were counted and
removed each day. At the conclusion of the test (22 days) the
length of the daphnids was measured from the top of the
head capsule to the bottom of body carapace and the sex
was determined using 40X magnification (14). The following
end points were calculated: total number of offspring/female
daphnid, total number of molting cycles/daphnid, total
number of broods, average number of offspring/brood (first
2 broods only), and length. The results are shown in Figure
S2 in the Supporting Information. Student’s t test was used
to determine statistical difference from control or upstream
sample.

Field Sample Exposures. Exposures were performed using
∼20 adult (16-18 day old) D. magna randomly distributed
into either 1 L of modified COMBO media (used as the
controls in the microarray hybridization experiments) or 1
L of the appropriate dilution of field sample for 24 h. For all
the Walker Mine samples and the Greenhorn Mine samples
GM_UP and GM_DS2, no dilution was necessary. For the
Greenhorn Mine samples GM_DE and GM_DS1, the field
samples were diluted to 50% with modified COMBO media
to prevent acute toxicity. A COMBO media control was
performed alongside each field sample exposure, so that each
exposure had a complimentary unexposed control for the
microarray hybridizations. To obtain a gene expression profile
for the upstream reference field sites and compare these
expression profiles to the expression profiles of contaminated
sites as well as single metal exposures done previously, we
used laboratory media and not upstream field water for the
unexposed controls in all the microarray hybridizations. For
the microarray experiments, three biological replicates were
performed for each field sample exposure on separate dates.
A fourth exposure was performed for q-RT-PCR analysis.
Following exposure studies, pH, dissolved oxygen (DO), water
hardness, and alkalinity were measured, and recorded. pH
was measured using a basic pH electrode (Denver Instru-
ments, Denver, CO). DO was measured with a traceable digital
oxygen meter (Fisher scientific, Hampton, NH). Water
hardness and alkalinity were determined using standard
methods (15). In unexposed controls, pH varied between 7.9
and 8.2; DO ranged from 7.3 to 8.0 mg/L; water hardness was
between 120 and 135 mg CaCO3/L; and alkalinity was
maintained between 65 and 80 mg CaCO3/L. In the field
sample exposures, the water quality measurements were
similar to those recorded in Table 1 with the exception of
DO. The DO in these experiments resembled the control
values, ranging between 6.8 and 8.2 mg/L.

RNA Isolation and Microarray Hybridization. D. magna
were harvested as described previously (6), and RNA was
isolated using Trizol according to standard methods (Invit-
rogen, Carlsbad, CA). Before we proceeded to reverse
transcription, RNA from both the unexposed and exposed
D. magna was split into two pools, to provide two replicate
hybridizations for each metal exposure. Because three
exposures were performed for each metal, and RNA from
each exposure was hybridized to two different microarrays,
there were six hybridizations for each exposure condition.
Details related to the construction of the D. magna microarray
and the microarray hybridization procedure have been
described previously (6) and are available in the Supporting
Information. Information about experimental design, raw
signal intensity values, and other MAIME compliant data are
available at the Gene Expression Omnibus (GEO) (located at
http://www.ncbi.nlm.nih.gov/geo) with the accession num-
bers GSE7666 (Walker Mine data) and GSE7667 (Greenhorn
Mine data).

Identification of Candidate Differentially Expressed
Genes. The statistical methods used to normalize the data
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and identify differentially expressed genes are described in
Loguinov et al. (16). We applied an average false positive
cutoff of 1 to identify candidates for differential gene
expression. cDNAs differentially expressed in both technical
replicates and in two of the three biological replicates were
chosen as candidate differentially expressed cDNAs. The
methods used to identify differentially expressed genes is
available in the companion paper (10) and in the Supporting
Information.

Quantitative Reverse Transcription PCR. To confirm the
differential expression, we chose several genes for quantitative
reverse transcription PCR (q-RT-PCR) analysis. Experimental
details pertaining to q-RT-PCR is available in the companion
paper (10) and in the Supporting Information. Primer
sequences for all genes assayed can be found in Table S5 in
the Supporting Information.

Clustering and Class Prediction Analysis. To determine
the relationship between the gene expression profiles from
the upstream or reference sites, the mine field samples, and
the metal exposures we conducted in the laboratory, we
performed clustering analysis. Clustering was performed
using the tools available from Expression Profile data
CLUSTering and analysis (EPCLUST) (http://ep.ebi.ac.uk/
EP/EPCLUST/). We clustered only the differentially expressed
cDNAs with the averages given in Table S4 in the Supporting
Information. The data was first transposed following gene
clustering using the average linkage (average distance,
UPGMA) clustering based on correlation measure-based
distance (uncentered). The different exposures were then
clustered using the same algorithm. Other clustering algo-
rithms available through EPCLUST produced similar clusters.
Following the clustering analysis, the samples were unblinded
to reveal the identity of the mine samples and are shown in
Figure 2. Additional clustering was performed with three
biological replicates for each condition and are shown in
Figure S3 in the Supporting Information. We used K-nearest
neighbor (KNN) class prediction method through Gene
Pattern program to predict the class of each unknown mine
sample (17, 18). Technical replicates were averaged to obtain

an averaged log2 ratio for each biological replicate. The cross-
validation algorithm was run on the gene expression values
from laboratory exposures to obtain parameters that best-
predicted the known classes of the metal exposures. A model
was created for the metal exposure data using the following
parameters: no. of features, 10; feature selection statistic, t
test; no. of neighbors, 10; weighting type, distance; distance
measure, cosine distance. This model was used to predict
the classes of the “unknown” mine samples and results are
shown in Table S6 in the Supporting Information.

Results and Discussion
The purpose of our study was to illustrate the feasibility of
using gene expression profiling in environmental monitoring
by confronting two major challenges. Can gene expression
profiling predict the contaminant present in field samples?
Is it possible to differentiate between toxic samples that will
likely cause effects and nontoxic samples? To address these
questions, we chose two abandoned Cu mines to conduct
our field research. These locations were ideally suited for
this study because there were uncontaminated upstream
sites close to the sampling sites, and the surface waters were
primarily contaminated with only one pollutant, Cu.

Metal Concentrations in Mine Effluent. As predicted from
past metal analysis done by the California Regional Water
Quality Control Boards, Cu is the primary pollutant in the
creeks of Walker Mine and Greenhorn Mine. Table S3 in the
Supporting Information presents the results of the dissolved
metal concentrations of Cu, Cd, and Zn at four sampling
sites at Walker Mine and Greenhorn Mine. Upstream samples
contain undetectable levels of Cu, providing evidence that
the Cu contamination originated from the mines, and
suggesting that the upstream sites are suitable reference sites.
The downstream samples contain high levels of dissolved
Cu in most cases greater than the NOECacute concentration
of 30 µg/L (see Poynton et al. (10)). At the Walker Mine
location, the mine portal has been sealed during recent
remediation and Cu levels coming directly out of the mine

TABLE 1. Quantitative Reverse Transcription PCR (q-RT-PCR) Confirmation of Microarray Gene Expression Ratiosa

a D. magna were exposed to Cu at the 1/10 LC50 (6 µg/L) or the NOEC (30 µg/L) or a water sample collected from Walker
Mine or Greenhorn mine for 24 h. Following the exposure, RNA was isolated and reverse transcribed. q-RT-PCR was
carried out on the cDNA using SYBR Green as described in the methods section. Log2 ratios from the q-RT-PCR analysis
are compared to the averaged log2 ratios for the microarray experiments. Genes significantly differentially expressed for a
given condition are shown in red for upregulated genes or green for downregulated genes.
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portal are low. However, Dolly Creek flows directly through
the mine tailings and accumulates the highest dissolved Cu
levels. Zinc also appears to be a major contaminant especially
at the Greenhorn Mine site. Because Zn is less toxic to many
aquatic organisms as compared with Cu, we normalized the
dissolved metal concentrations by the LC50 and presented
their concentrations as Toxicity Units (TUs) in Figure 1. As
shown in Figure 1 B, although Zn concentrations are greater
than Cu at the Greenhorn mine sites, they contribute very

little to the overall toxicity of these samples. Cu levels at the
Greenhorn mine site surpass the LC50 at all three downstream
locations.

Acute Toxicity of Mine Effluent. Because the concentra-
tion of Cu in the field samples was in many cases above the
LC50, we performed acute toxicity assays to determine
appropriate dilutions to use for the D. magna exposures. All
samples showed little or no acute toxicity except for two
Greenhorn mine samples closest to the mine drainage entry

FIGURE 1. Copper, cadmium, and zinc toxicity units at Walker Mine and Greenhorn Mine. Dissolved metal concentrations were
determined for each sampling site at (A) Walker Mine and (B) Greenhorn Mine using ICP-MS. The dissolved metal concentration
(shown above each graph) was divided by the LC50 for each metal (Cu, 62 µg/L; Cd, 180 µg/L; Zn, 5000 µg/L) to determine the toxicity
units (TUs) for each sample. TUs are shown with standard deviation.

FIGURE 2. Clustering of differentially expressed genes following exposures to metals or field samples. cDNA collected from
daphnids exposed to either a specific metal concentration or field sample were hybridized with cDNA from daphnids exposed to
untreated laboratory media. cDNAs determined to be differentially expressed in the exposures compared to unexposed controls were
used for the clustering analysis. Clustering was performed using the tools available from EPCLUST (http://ep.ebi.ac.uk/EP/EPCLUST/)
including the average linkage (average distance, UPGMA) clustering based on correlation measure-based distance (uncentered).
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site, GM_DE and GM_DS1. Fifty percent dilution of these
samples with standard laboratory media prevented all acute
toxicity.

Prediction of Cu Toxicity by Gene Expression Analysis.
To illustrate that expression profiling can be used to predict
the presence of specific pollutants in environmental samples,
we exposed daphnids to field samples collected from Walker
Mine and Greenhorn Mine. Following RNA Isolation, we
double-blinded samples to mask the identity of the samples
during microarray hybridizations and data analysis.

After performing microarray hybridizations, we identified
differentially expressed genes associated with each exposure
(16) and calculated an average log2 ratio for each transcript.
Ratios for the 189 differentially expressed genes were
uploaded into EPCLUST to perform hierarchical clustering.
The results shown in Figure 2 revealed that five of the mine
samples clustered together and that they were most closely
related to the expression profiles for Cu 1/10 LC50 and Cu
NOEC. These samples are separated on a node with the Cu
exposures and are distinct from the expression profiles of
the other metals. Uncovering their identity revealed that these
five field samples were the samples highly contaminated with
Cu. Therefore, the gene expression analysis correctly pre-
dicted that these samples contained Cu and not toxic
concentrations of Cd or Zn. We also performed clustering
analysis on the individual exposures to assess the similarity
of individual replicates (see Figure S3 in the Supporting
Information). Although one of the Cu exposures failed to
cluster with the other replicates, the only metal exposures
which clustered with the contaminated mine samples were
the other two 1/10 LC50 Cu exposures. As a final test to
determine how well gene expression profiling predicted the
toxicant present in the field samples, we performed the class
prediction algorithm K-nearest neighbors (KNN). This specific
class prediction method was chosen because it allows the
user to cross-validate the training model on the training set
and is also capable of multiple class predictions. Using KNN,
the two contaminated Walker Mine sites (WM_DT) and
(WM_LG) were predicted to belong to the 1/10 LC50 Cu class
across all biological replicates (see Table S6 in the Supporting
Information). The contaminated Greenhorn Mine sites
(GM_MP, GM_DS1 and GM_DS2) were each predicted to
belong to the 1/10 LC50 class in 2 of the 3 biological replicates.
Interestingly, the other replicate in GM_MP and GM_DS1
was predicted to belong to the NOEC_Zn class, which may
result from the presence of Zn in these samples. The upstream
samples and WM_DP were not consistently predicted to
belong to any class, illustrating that these samples are not
similar to any one metal exposure. Overall, the clustering
analysis and class prediction strongly suggested that Cu is
the primary toxicant in the contaminated field samples. This
is the first study to our knowledge that has used a genomic
response to successfully predict the presence of a specific
toxicant in a field sample.

This study has also shown that standard laboratory media
is a suitable control for performing microarray hybridizations
with field samples. We chose standard laboratory media for
our unexposed controls because we were able to directly
compare gene expression profiles from the field samples and
single chemical exposures presented in a companion paper
(10) and also construct gene expression profiles for the
upstream samples (WM_UP and GM_UP), or reference sites.
In the expression profiles for the upstream samples few genes
are differentially expressed; however, Table S1 and S2 in the
Supporting Information show that several general water
quality measurements differ between the field samples and
modified COMBO media. The water hardness and alkalinity
in the field samples is slightly lower than our laboratory
media. Also, the field samples contained dissolved organic
carbon (DOC), which is not present in our laboratory media.

Despite these differences, the expression profiles of the
upstream samples caused very few gene expression changes
compared with the laboratory media, making it a suitable
control in our microarray studies. This confirms that gene
expression responds to chemical stress and environmental
challenges, but is not greatly affected by slight alterations in
the environment. However, at other field sites, different water
quality parameters may alter gene expression, affecting the
expression profiles of the contaminated samples. Reference
sites should be tested prior to using laboratory media for
unexposed controls to ensure that gene expression is not
affected by uncontaminated water samples at the site.

Biomarkers of Cu and Metal Exposure. After revealing
the identity of the mine samples, we grouped the differentially
expressed genes into functional categories. Table S4 in the
Supporting Information shows a complete list of all the
differentially expressed genes in the eight mine samples and
also the ten metal exposures described previously in a
companion paper (10).

Because we were also interested in identifying novel
biomarkers of exposure and developing multibiomarker tests
for environmental monitoring, we identified a set of genes
that may be suitable biomarkers of metal exposure and
specifically copper exposure. We selected candidate biom-
arkers that were both associated with Cu or general metal
exposure from our previous microarray studies (6, 10) and
differentially expressed in the five mine samples containing
high levels of Cu. These include biomarkers predicative of
general metal exposure, metallothionein (MT) (a) DV437799,
monoxygenase DV437798, slit homologue DV437805, cel-
lulase DV437797, and preamylase ES408209, and those
specific for Cu exposure, inositol monophosphatase (IMPase)
DV437806, lectin DV437813, and ES408276. Differential
expression of these genes was confirmed by q-RT-PCR
analysis and correlates well with the microarray data (see
Table 1). The candidate biomarkers selected include genes
possibly involved in the mode of toxicity of Cu, and are further
discussed in our companion paper (10). Because these
candidate biomarkers are novel, it is not known what other
factors may influence their expression; therefore, further
studies with other chemicals may be needed to validate their
specificity before they can be adopted as biomarkers of
copper exposure.

Correlation between Chronic Toxicity and Gene Ex-
pression Profiles. Because other factors in the field samples
including DOC and water hardness influence the toxicity of
Cu, we compared the toxicity of the mine samples to the
toxicity of defined laboratory concentrations of Cu. Figure
1 shows that five field samples contain Cu concentrations
close to or exceeding the LC50 for Cu; however, in 24 h acute
toxicity assays, three of these samples did not result in
appreciable mortality. Therefore, we could not directly
compare the concentration of Cu in the laboratory exposures
to the concentrations of Cu in the field samples. We
performed a 21 day chronic toxicity assay with the Walker
Mine samples to compare them to equitoxic levels of Cu.
There was no difference in reproduction in the upstream or
reference site, but we were able to see significant differences
in daphnids exposed to contaminated mine samples com-
pared to the control and upstream exposed daphnids (see
Figure S2 in the Supporting Information). One important
result was that the WM_DP sample, which contained 4.8
µg/L, a concentration approaching the Cu 1/10 LC50 of 6
µg/L, did not cause the same level of chronic toxicity as the
6 µg/L exposure. There was no difference in chronic toxicity
of this sample and upstream sample or the control. Ad-
ditionally, we found that the two samples with the highest
Cu concentrations had similar chronic toxicity to the 6 and
30 µg/L samples, although the WM_DT resulted in higher
mortality. The gene expression profiles reflect the chronic
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toxicity of the field samples. As shown in Figure 2, the
expression profiles from the field samples with a significant
chronic response are clustered together. They are also most
similar to the 1/10 LC50 and NOECacute. The WM_DP sample
did not result in chronic toxicity and its gene expression
profile clustered away from the samples that did. In fact, the
most closely related gene expression profile was the 1/10
EC50 (2.4 µg/L) Cu profile, which is below chronically toxic
levels and is considered a tolerated concentration. In
conclusion, there appears to be a strong linkage between the
gene expression profile and the level of toxicity observed in
a sample.

Evidence for NOTEL in Field Samples. We examined the
gene expression profiles from the upstream samples to
determine how an uncontaminated environmental sample
may affect gene expression in D. magna. Because Cu was
undetectable in these samples, if gene expression changes
occurred in these samples they would not be related to the
presence of Cu, but to other constituents of the environmental
sample. However, on the basis of the results presented in
Table S4 in the Supporting Information, that few genes are
differentially expressed the upstream samples, gene expres-
sion was not influenced by these other constituents. We next
graphed the number of differentially expressed genes in each
sample to visualize how Cu concentrations influenced the
global changes in gene expression. As shown in Figure 3, few
genes are differentially expressed in the samples with low Cu
levels, but in samples with high Cu concentrations, the
number of differentially expressed genes is much greater.

In a companion paper, we found that very low, nontoxic
concentrations of Cu, Cd, and Zn caused the differential
expression of only a few genes suggesting that a no observed
transcriptional effect level (NOTEL) may exist for these metals
(10). In addition, the expression profiles of the low concen-
tration exposures were distinct from the profiles of the higher,
toxic concentrations providing a means for differentiating
between toxic and nontoxic metal concentrations. In this
study, we found that samples with undetectable concentra-
tions of copper caused few differentially expressed genes
(see Figure 3). A similar result was reported by Roling et al.,
who examined gene expression changes in mummichogs
(Fundulus heteroclitus) following remediation of Chromium
contamination at a Superfund site. They showed that when
tissue Cr concentrations were low in the mummichog, very
few genes were differentially expressed (19). These findings
are promising for a potential role of the NOTEL in environ-
mental monitoring. It appears that when only a few genes
are differentially expressed, there is no exposure to toxic
pollutants and no observable toxicity. This suggests that a

field sample resulting in no changes in gene expression, a
NOTEL, could be assumed to be nontoxic.

However, the presence of differentially expressed genes
does not equate to toxicity. In the WM_DP sample, 21 genes
were differentially expressed, but this sample did not result
in any chronic effects to reproduction or growth when
compared to the upstream sample (see Figure S2 in the
Supporting Information). Because Cu is an essential mineral,
the organism may be responding to increased physiological
Cu levels. Alternatively, the differentially expressed genes
may include compensatory responses to low but tolerated
levels of Cu. As suggested by Ankley et al., the identity and
proposed function of the differentially expressed genes should
be taken into consideration when applying the NOTEL to a
regulatory setting (1). In our study, of the eight proposed
biomarkers of Cu exposure, only one gene was differentially
expressed in the WM_DP sample (See Table 1). Additionally,
the gene expression profile from this sample did not cluster
with the expression profiles of the toxic Cu concentrations.
In a monitoring or regulatory setting, two techniques could
be used to distinguish toxic and nontoxic concentrations.
First, the NOTEL could be applied only to specific biomarkers
correlated with toxicity such as the general metal and Cu
specific biomarkers presented in this study. Second, cluster-
ing analysis of the gene expression profiles could help
distinguish between toxic and nontoxic sites because non-
toxic sites would not cluster with the expression profiles of
the toxic sites. Proteomics and metabolic studies could also
be employed to increase the weight of evidence and ensure
that effects are not seen at the protein or metabolite levels.
In conclusion, when no or few genes are differentially
expressed in a field sample, it is very likely that this sample
is not polluted. However, when gene expression changes are
observed, additional criteria, such as differential expression
of specific genes, will be needed to distinguish between toxic
and nontoxic samples.

Using a Daphnia magna cDNA microarray, we illustrated
the potential of gene expression profiling to predict the
presence of a specific contaminant in a polluted field sample.
Clustering analysis revealed that field samples containing
high concentrations of Cu clustered most closely with the
expression profiles of laboratory Cu exposures. This study
also established the existence of a NOTEL in environmental
samples suggesting a potential role for the NOTEL in
environmental monitoring. Although further studies with
other chemicals and mixtures are needed to validate the use
of gene expression profiling in environmental monitoring,
this study has shown that applying genomic tools to a field
situation is feasible.
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Supporting Information Available
Maps of the field sampling locations (Figure S1), chronic
toxicity data for Walker Mine samples (Figure S2), and
clustering analysis of individual exposures (Figure S3); water
quality parameters for Walker Mine (Table S1), Greenhorn

FIGURE 3. Number of genes differentially expressed after a
24 h exposure to each field sample collected from Walker Mine
or Greenhorn Mine. Differentially expressed genes were
determined based on the method of Loguinov et al. (18). The
bars are colored to reflect the relative Cu levels in each of the
samples.
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Mine (Table S2), dissolved metal concentrations (Table S3),
the list of all differentially expressed genes (Table S4), qPCR
primer sequences (Table S5), and KNN class predication
results (Table S6) (PDF). This material is available free of
charge via the Internet at http://pubs.acs.org.
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