CWEMF Annual Meeting
April 24, 2013
Paul Hutton, Ph.D., P.E.

Model Description

Results

Form proposed by Monismith et. al. (2002):

$$X2(t) = A * X2(t-1) + B * Q(t)^{C}$$

Assume steady state conditions:

$$X2(t) = X2(t-1)$$

 $Q(t) \approx antecedent outflow = G(t)$

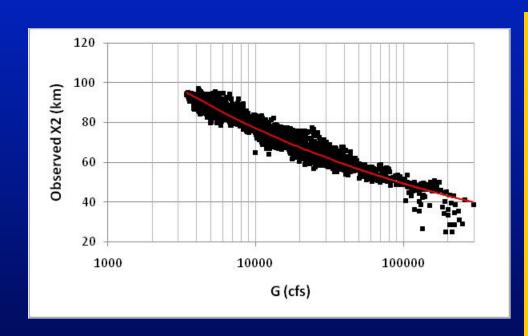
$$X2(t) = \Phi_1 * G(t)^{\Phi_2}$$
(1)

where constants:

$$\Phi_1 \approx B / (1-A)$$

 $\Phi_2 \approx C$

$X2(t) = \Phi_1 * G(t)^{\Phi_2}$



Calibrating this relationship on a consistent period (1967-1991) and reporting flow in m³/sec results in:

$$\Phi 1 = 190$$

$$\Phi 2 = -0.160$$

Gross et. al. (2010) reported similar "steady fit" model parameters:

$$\Phi 1 = 186$$

$$\Phi 2 = -0.160$$

 $\Phi_1 = 465$; $\Phi_2 = -0.195$; $r^2 = 0.93$ if G(t) reported in m³/sec, $\Phi_1 = 232$

Assumptions:

Calibration period – Jan 2000 thru Dec 2009 Daily X2 interpolated values $\beta = 1.5 \times 10^{10}$ - Denton typical

Form proposed by Denton (1993):

$$S = (S_o - S_b) * exp[-\alpha * G(t)] + S_b(2)$$

where:

S = salinity (mS/cm)

 $S_o = downstream (maximum) salinity$

 S_b = upstream (minimum) salinity

 α = fitting parameter

Set S = 2.64 mS/cm and solve for $\alpha(X)$: $\alpha(X) = -\tau/G(t)$ (3)

where:

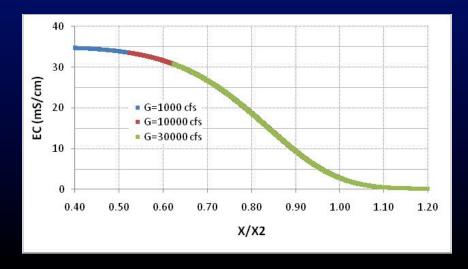
$$\tau = \ln[(2.64 - S_b)/(S_o - S_b)]$$

After some algebra

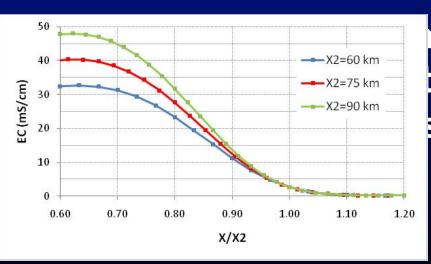
(this expression can also be expressed as a power function):

$$S = (S_o - S_b) * exp[\tau * (X/X2)^{-1/\Phi_2}] + S_b(4)$$

Salinity (S) can be determined at any longitudinal distance from Golden Gate (X) given X2 and Φ_2 and assuming reasonable values for S_o and S_b .



- But as observed by Monismith et. al. (2002), "self-similar" behavior breaks down at high outflows
 - Therefore, assume S_o is a variable
 - For illustration, assume a non-optimized relationship: S_o (mS/cm) = 0.35 * X2 (km)
 - No absolution description description description.
 Therefore "effective



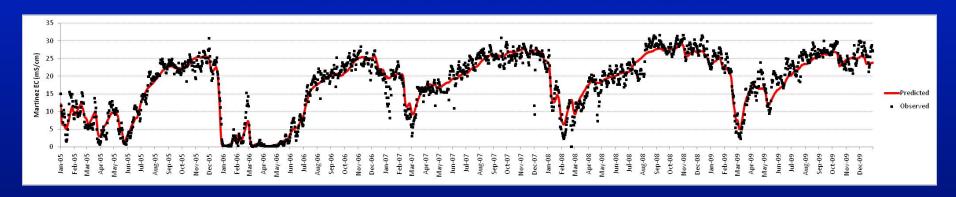
neasuring te Bridge, but sumptions. of an

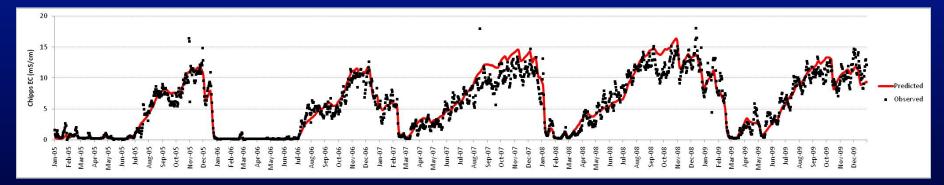
Model Description

Results: Fixed Station Estimates

Predicted & Observed Daily Salinity

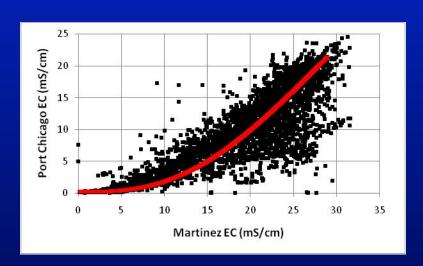
Time Series Jan 2005 - Dec 2009

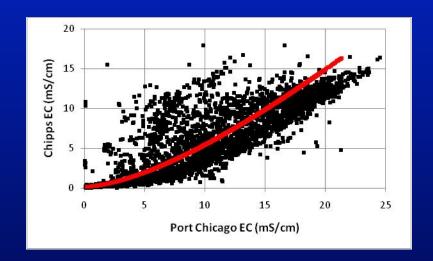


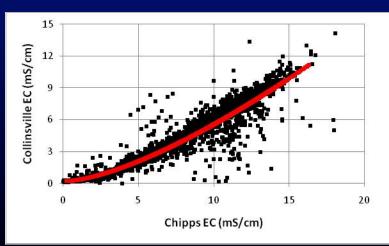


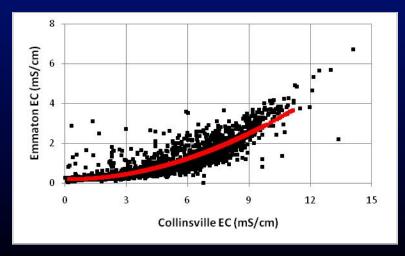
Predicted & Observed Inter-Station

Salinity Relationships Jan 2000 - Dec 2009









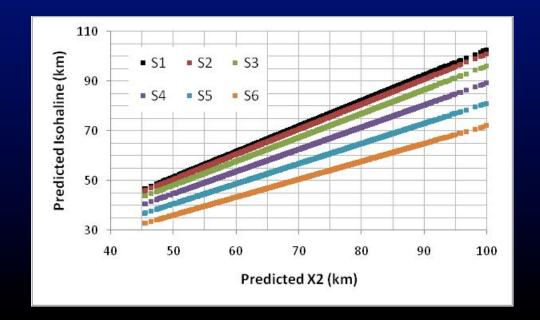
Model Description

Results: Isohaline Position Estimates

Re-arrange Eq. 4 to solve for X:

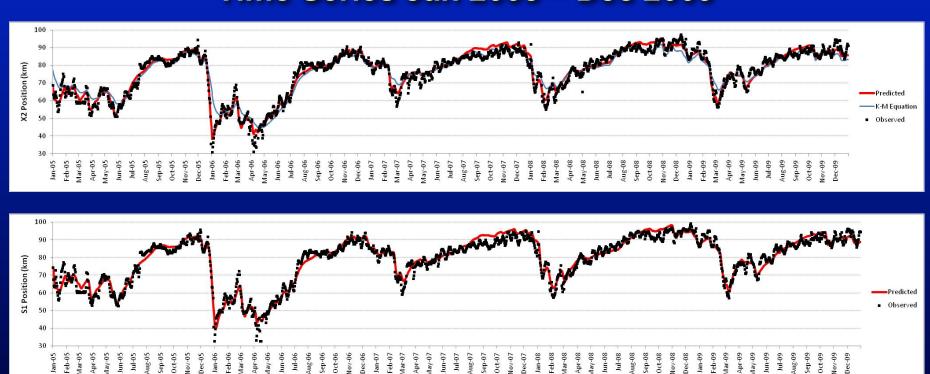
$$X = X2 * \{ ln [(S - S_b)/(S_o - S_b)] / ln \tau \}^{-\Phi_2}(5)$$

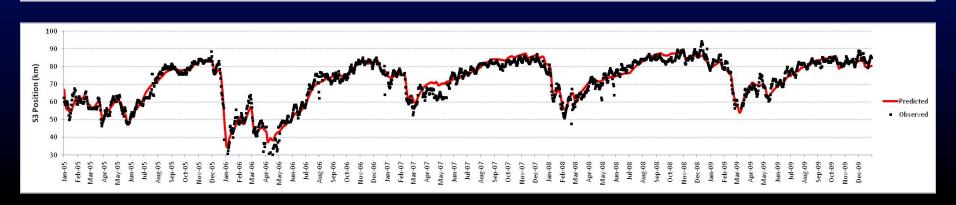
An isohaline position (X) can be determined for any surface salinity (S) given X2 and Φ_2 and assuming reasonable values for S_0 and S_b .



Predicted & Observed Daily Isohalines

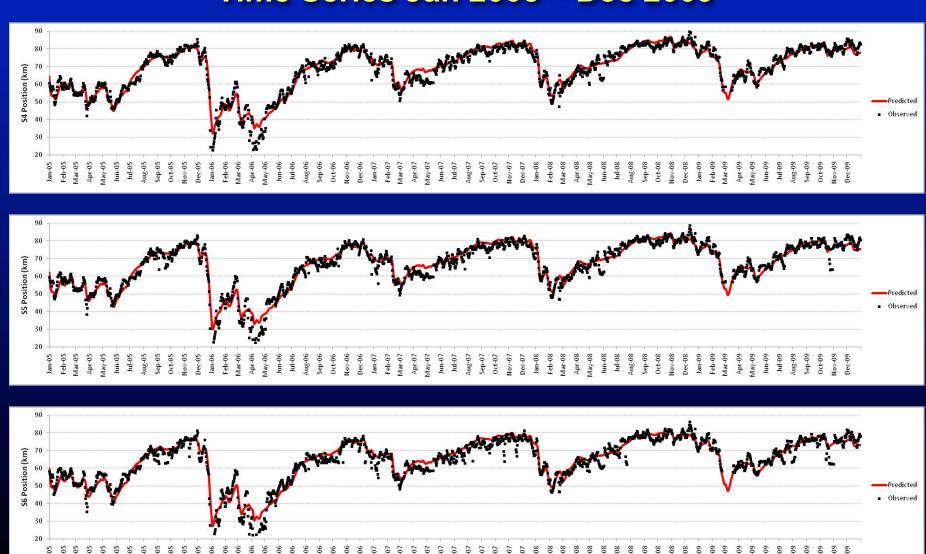
Time Series Jan 2005 - Dec 2009





Predicted & Observed Daily Isohalines

Time Series Jan 2005 - Dec 2009



Model Description

Results

Paul Hutton, Ph.D., P.E. phutton@mwdh2o.com