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1. INTRODUCTION  
The abundance of several biological populations in the eastern reaches of San Francisco 
Estuary (Western Delta) is related to the location of the low salinity zone, which in turn 
depends on freshwater outflows from the Delta (Jassby et al. 1995). The position of the 2 
parts per thousand (ppt) bottom salinity isohaline, termed X2, is a key component of the 
salinity standard in the estuary (US EPA, 1995). Under current regulations, it is interpolated 
as an equivalent surface salinity from fixed monitoring stations and reported as a distance 
from Golden Gate Bridge. Besides the X2 position, which is largely driven by habitat 
considerations, there are also salinity compliance points further east in the Delta for 
municipal and agricultural uses. Salinity behavior in an environment such as San Francisco 
Bay is known to be dynamic, and dependent on tides as well as current and antecedent 
freshwater flows (Harder, 1977; Denton and Sullivan, 1993). In support of inflow 
management in the Western Delta, there is a need to develop predictive tools that provide 
information on salinity at specific locations and the X2 position as a function of other inputs 
that can be predicted or defined.  

In previous work, four types of predictive tools for X2 and/or salinity have been applied for 
different purposes:  

• Autoregressive equation between Delta outflow and X2 position, termed the K-M 
model (Kimmerer and Monismith, 1992; Jassby et al., 1995);  

• Salinity-antecedent flow relationship based on an approximate solution to the one-
dimensional advection-dispersion equation for salt transport, termed the G-model 
(Denton and Sullivan, 1993);  

• Numerical models of hydrodynamics and salinity, for example, one-dimensional 
linked-node modeling of hydrodynamics and salinity of the Delta using the 
California Department of Water Resources’ (DWR) Delta Simulation Model (DSM-
2), and three-dimensional modeling for salinity and flow in the entire bay and 
estuary (Gross et al., 2007, 2010);  

• Artificial neural networks (ANNs) to represent flow and salinity in the Delta (Finch 
and Sandhu, 1995; Wilbur and Munevar, 2001; Mierzwa, 2002; Seneviratne et al., 
2008).  

The K-M model and the G-model are relatively straightforward expressions that have been 
used within planning models to evaluate compliance with salinity standards in the estuary.  
The DSM-2 model has been set up and calibrated to compute salinity across the entire Delta 
with the western boundary at Martinez.  The DSM-2 model is used extensively for DWR’s 
annual reporting to the State Water Resources Control Board. The more detailed three-
dimensional solutions have been used to understand the depth-dependent behavior of salinity 
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under different flow and tidal conditions in San Francisco Bay and Delta region, although 
the computational demands of the models limits application within planning simulations that 
run over many years. The ANN approach has also been used extensively by DWR to 
represent salinity at different locations in the Delta, with the ANNs being trained on 
synthetic data being generated from DSM-2. Because ANNs run significantly faster than the 
mechanistic models they are trained on, they can be employed within planning models, 
where there is a need to return results rapidly. In contrast with prior applications, the present 
work is focused on the development of ANNs using observed data, as opposed to model 
output. 

Although ANNs have a demonstrated record of describing complex hydrologic and water 
quality behavior (Maier et al., 2010; American Society of Civil Engineers, 2000), 
considerable testing and refinement is needed for a specific application, including 
identification of a suitable network structure, appropriate inputs, and time lags. Furthermore, 
ANNs are data-driven formulations, with the best performance occurring in the space over 
which the training has been performed, and with undefined performance when extrapolated 
beyond the training space. For this reason, it is beneficial to perform the training with the 
largest possible data set to assure that a wide variety of conditions are represented. In the 
present work, a set of ANN models for salinity for the western Delta and the estuary was 
developed using observed salinity data over nearly four decades, averaged to a daily time 
step. Multiple ANN formations were considered to evaluate performance over a range of 
inputs, and to allow selection of a model that balances input complexity and performance. 
The inputs considered included flows, tide terms, and channel depth. Two types of models 
were developed: one set that was focused on predicting salinity in the estuary based on 
distances from Golden Gate, and a second set focused on individual stations, not accounting 
for distance. The models can be applied to predict salinity at a specific location or as a 
function of distance; the latter information can be used to interpolate the values of X2.  

The remaining sections of this report describe the data and approach used (Chapter 2); 
results from the different ANN models, comparison against existing tools and exploration of 
sensitivity of specific inputs such as flows and sea level (Chapter 3); and a summary of key 
findings and recommendations on the use of selected models in future applications (Chapter 
4).  
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2. APPROACH  
Multiple ANNs were trained using combinations of inputs (flow, tide, and channel depth) to 
evaluate which set of inputs adequately explain salinity behavior in the San Francisco 
estuary. The results of the training are individual ANNs that predict salinity as a function of 
distance for the Sacramento and San Joaquin Rivers, based on inputs of flow and tide. For 
efficient screening across a large number of models, the coefficient of correlation between 
the observed data at fixed locations and the model results (r) was used for comparison. ANN 
model results were compared with salinity estimation approaches used in previous work in 
the Delta, including the Kimmerer-Monismith equation (K-M equation, Kimmerer and 
Monismith, 1992), the G-model (Denton and Sullivan, 1993; Denton, 1993), and DSM-2 
calculations for 1990-2010 (Sandhu, 2011, personal communication). 

2.1 DATA TYPES USED 
Salinity data, in the form of surface salinity reported as electrical conductance at 25 oC (EC 
in units of µS/cm) were used to train the model. The data were obtained from the California 
Data Exchange Center (CDEC), the Interagency Ecological Program (IEP), and US 
Environmental Protection Agency’s STORET database (short for STOrage and RETrieval). 
Data were obtained for a set of fixed stations in the western Delta and San Francisco Bay. 
Additional data for stations in the Bay were also obtained from the US Geological Survey 
(USGS) (Carquinez and Point San Pablo). Other inputs used to train the ANN models 
included flow data obtained from DWR’s DAYFLOW program, daily tide data obtained 
from the National Oceanic and Atmospheric Administration (NOAA), channel depth data 
obtained from the California Department of Fish and Game (CDFG), and distance from 
Golden Gate computed using station coordinates and measured along a line running down 
the mid-depth of the estuary.  Specifics relating to the data used for training are described 
below. 

2.2 ARTIFICIAL NEURAL NETWORK (ANN) MODELS 
2.2.1 Model Inputs  

The ANN models used in the training considered combinations of different input variables 
including:  

• Station distance (km) from Golden Gate  

• Channel depth – average annual values obtained from California Department of Fish 
and Game trawls  

• Flow variables – Rio Vista flow (on the Sacramento River), Qwest flow (on the San 
Joaquin River past Jersey Point), and net Delta outflow from the DAYFLOW 
program 

• Tides – Martinez and Antioch half tide, and Golden Gate tide, obtained from DWR 
and NOAA   
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Different time-delays for the flow and tide inputs were also explored, where a delay of n 
days refers to the use of 1 through n preceding days of inputs.  Thus, a flow delay of 30 days 
refers to the use of flows from the previous 1 through 30 days (30 individual values) as 
input.  In most of these model structures, salinity was calculated as a function of distance 
using the boundary inputs with a variable time delay. In a limited number of cases, we 
explored the role of antecedent salinity (as an additional input) in improving the quality of 
the fit.  We also explored the development of station-specific ANNs, particularly for stations 
that were important from the compliance perspective and where the distance-based ANNs 
did not perform as well. 

2.2.2 ANN Output Locations  
For each input set, two separate ANN models were developed for the lower Sacramento 
River and lower San Joaquin River stations. The training was performed at fixed stations as 
a function of distance for either river, with the ANN output being available at any arbitrary 
distance within the range of distances considered. Training stations for the Sacramento River 
ANN model were salinity at a number of locations along the lower Sacramento River and 
several stations in the Bay. These include the following (station codes and distances from 
Golden Gate as computed by us along the center-depth of the estuary):  

• Point San Pablo (PSP, 22 km)  

• Carquinez (CAR, 45.5 km) 

• Martinez (MRZ, 54.8 km)  

• Port Chicago (PCT, 66.1km) 

• Mallard Island (MAL, 76 km) 

• Collinsville (CLL, 82.9 km)  

• Emmaton (EMM, 93.0 km) 

• Decker Island (SDI, 93.9 km)  

• Rio Vista (RVB, 102.7 km) 
Training stations for the San Joaquin River ANN model were salinity at a number of 
locations along the lower San Joaquin River and several stations in the Bay. These include 
the following, using the same format as for the Sacramento River stations:  

• Point San Pablo (PSP, 22 km)  

• Carquinez (CAR, 45.5 km) 

• Martinez (MRZ, 54.8 km)  

• Port Chicago (PCT, 66.1) 

• Mallard Island (MAL, 76 km) 

• Pittsburg (PTS, 80.2 km) 

• Antioch (ANH, 87.3 km) 
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• Blind Point (BLP, 94.7 km) 

• Jersey Point (JER, 98.7 km) 

• Threemile Slough @ SJR (TSL, 103.3 km)  

• San Andreas Landing (SAL, 112.9 km) 
The locations of these stations are shown in Figure 2-1. Note that for the overlapping part of 
the two river models, ANN output can be generated from either model. 

Besides the distance-salinity models, for selected stations, station-specific ANN models 
were also developed. 

 
Figure 2-1  Locations of output stations for ANN training. Three letter codes, where shown, 

refer to CDEC and USGS station codes.  

2.2.3 ANN Model Structure  
The dynamic nature of flow and salinity in the Delta requires a network structure that takes 
into account the time-series of inputs. Although other network structures have received 
attention in the recent literature, the multi-layer perceptrons (MLPs) are by far the most 
popular network structures used in water resource applications to date, representing more 
than 90% of the peer-reviewed applications in the water resources field (Maier et al. 2010). 
For this reason, the feedforward MLP network was selected for this application.  
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For much of this analysis, ANNs were developed by accounting for station distance 
(integrating all stations along a river); based on the results of these salinity-distance ANNs, 
ANNs were developed focused on a set of specific stations. 

Different network structures with respect to the number of input variables and lengths of 
time delay were explored, to evaluate factors that may affect salinity in the estuary.  
Assuming a range on inputs related to flow (3 inputs), tide (5 inputs), time lags (4 inputs), 
and channel depth (2 inputs, either considered or not), results in 120 possible combinations 
of models to be trained and evaluated for each river.  In this work, a screening effort was 
used to identify a subset of candidate models for more detailed examination.   

In the first step, models with different time delays were explored ranging from 7 days to 60 
days.  A 30-day time delay was shown to provide good results and was the basis of 
subsequent modeling.  Time delays shorter than this showed slightly poorer fits, and 
increasing the time delay to 60 days showed little improvement for the distance-salinity 
ANN.   Furthermore, there was a practical constraint in the computational time taken for 
performing training with longer delays. For these reasons, a 30-day delay was identified as a 
reasonable balance for representing the system memory and the training time constraint. 

The depth effect was investigated separately, and was motivated by a recent evaluation from 
MWD (David Fullerton, personal communication) which suggested that changing bed depth 
may be relevant in explaining the discrepancies between salinity and flow relationships at 
certain locations (e.g., Collinsville). Although the depth term was not retained after the 
screening process, key results are summarized in Chapter 3 for future reference.   

Flow terms included in the model were net Delta outflow, flow at Rio Vista (on the 
Sacramento River), and the Qwest flow (representing San Joaquin River flow at Jersey 
Point), all of which were obtained from the DAYFLOW model.  The models were 
implemented using a single flow term (net Delta outflow), two flow terms (Rio Vista flow 
and Qwest flow), and using the Rio Vista flow plus a residual from the correlation between 
Rio Vista and Qwest flows.  The last of these inputs provides additional information to the 
model, reflecting the correlation between the flows in the two major rivers. 

The importance of tidal effects on salinity was evaluated by using different numbers of tidal 
terms in the training (from three tidal terms to no tidal terms) and using actual tide or the 
astronomical tide plus a residual term between the actual and astronomical tide. The 
consideration of these variables resulted in a total of 10 ANN models to be evaluated for the 
distance-salinity relationships (Table 2-1).   

The model inputs evaluated in Table 2-1 also served as the basis for a limited assessment of 
the station-specific ANNs.  The station-specific ANNs were limited to locations where the 
distance-based ANNs did not provide fits that were of high quality, and which are also 
important from the standpoint of water quality compliance. 
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Table 2-1 
Candidate ANN Model Structures Evaluated Following Initial Screening   

Number Flow Tides 

Antecedent 
salinity 

Data as Input 
Time 
Delay 

1 Net Delta Outflow  Astronomical tide, residuals with actual tide No 30 

2 Rio Vista Flow, 
Qwest Flow Astronomical tide, residuals with actual tide No 30 

3 Rio Vista Flow, 
Qwest as f (QRio) 

Astronomical tide, residuals with actual tide No 30 

4 Rio Vista Flow, 
Qwest as f (QRio) 

Three tidal terms (tidal range at Golden Gate and 
Martinez, and half tide at Mallard Island)  No 30 

5 Rio Vista Flow, 
Qwest as f (QRio) 

Two tidal terms (tidal range at Golden Gate and 
Martinez) No 30 

6 Rio Vista Flow, 
Qwest as f (QRio) 

One tidal term (tidal range at Golden Gate) No 30 

7 Rio Vista Flow, 
Qwest as f (QRio) 

No tidal term   No 30 

8 Rio Vista Flow, 
Qwest as f (QRio) 

Actual tide (MSL at Golden Gate)  No 30 

9 Rio Vista Flow, 
Qwest as f (QRio) 

Astronomical tide, residuals with actual tide Yes 30 

10 Rio Vista Flow, 
Qwest as f (QRio) 

Astronomical tide, residuals with actual tide NARX 30 

 
 
2.2.4 Training Approach 

In this work, the data were divided in the following manner: 60%, 20%, and 20% for 
training, validation and testing, respectively. The training and validation data were used 
together in calculating the biases and weights that form the ANN, and the test data set were 
completely independent for additional evaluation of model performance. The dates for 
training, validation and testing were randomly selected from the entire dataset for each 
training cycle.  

The ANN networks were developed using feedforward networks with time delay and 
autoregressive networks (NARX, for Nonlinear Autoregressive Network with Exogenous 
Inputs). The ANN training used the back-propagation (Levenberg-Marquardt back-
propagation) method for error minimization. For each model structure, the training was 
repeated until a correlation of >0.98 was obtained.  

2.3 MODEL INPUT DATA  
2.3.1 Flow   

Flow data used in the ANN models were obtained from the DAYFLOW program (Rio Vista 
flow and Qwest flow are shown in Figure 2-2 and Figure 2-3). Because flow from Rio Vista 
is somewhat correlated to the Qwest flow (Figure 2-4), the Qwest flow can be expressed as 
residuals from real values and predicted values from the Rio Vista flow. The role of 
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freshwater flow in regulating salinity in the Delta was evaluated by using net Delta outflow 
alone, and with Rio Vista and Qwest flow as two separate terms in the training. A third  
alternative considered was the use of Qwest flow as a function of Rio Vista flow in the 
training with the residual as an additional input. The flow variables were evaluated using 
Models 1–3.  

2.3.2 Tide 
The role of tides was evaluated by using different numbers of tidal terms in the training, 
including three terms, two terms, one term, no tidal term, and by using the astronomical tide 
versus the actual tide (Models 4 to 8). Model performance in response to changes in the 
number of tidal terms was evaluated.  

Hourly tide data are available from DWR for the San Francisco Golden Gate, Martinez, and 
Mallard Island locations. The ANN model used the difference between daily maximum and 
minimum tide, which represents tidal range as input at Golden Gate and Martinez. For 
Mallard Island, the average of daily minimum and daily maximum (half tide), which 
represents mean sea level, is used. Representative tide data from Golden Gate are shown in 
Figure 2-5.  

The astronomical tide and the actual tide at Golden Gate used in the training were obtained 
from NOAA (mean seal level, MSL at hourly time steps) and converted to daily average 
values. When using the astronomical tide, the tides can be expressed as the astronomical 
tides and residuals between the actual and the astronomical tides. The residuals between 
actual tide and the astronomical tide were found to be a function of air pressure (Figure 2-6). 
Residuals between the actual and astronomical tides were not found to be correlated to other 
meteorological variables and are examined in Appendix A.  

2.3.3 Salinity  
The salinity data (EC, uS/cm) used in the training was obtained from CDEC, IEP, and 
STORET for a number of stations, which were then cleaned and filled. The data cleaning 
was done based on expected relationships between EC and flow at different locations such 
as those described in the G-model, and expected correlations between the adjacent stations. 
These expected functions were used to identify potential data errors in the dataset that were 
outside a certain range of the expected functions (e.g., two standard errors). The data 
cleaning procedures are described in Roy et al. (2013). The data filling was done using 
linear interpolation for data gaps less than 8 days. For data gaps that are more than 8 days, 
correlations with nearby stations were used to fill the gaps.  

The data obtained from the USGS for stations in the Bay were for salinity in practical 
salinity units (psu). To be consistent with the EC data in µS/cm, the salinity data from USGS 
were converted to EC using the approach outlined by Schemel (2001).  

𝑋𝑋25,𝑆𝑆 = � 𝑆𝑆
35
� × (53087) + 𝑆𝑆(𝑆𝑆 − 35) × [𝐽𝐽1 + �𝐽𝐽2 × 𝑆𝑆

1
2� + (𝐽𝐽3 × 𝑆𝑆) + �𝐽𝐽4 × 𝑆𝑆

3
2�] (1) 

Where, 

X25,S =  EC at 25 0C, J1= -16.072, J2 = 4.1495, J3 = -0.5345, J4 = 0.0261. 
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Similar to the CDEC data, correlations between adjacent stations were used to fill larger data 
gaps (> 8 days). The salinity data obtained from the USGS for stations in the Bay included 
Point San Pablo (PSP) at near-surface and Carquinez (CAR) at mid-depth.  The CAR station 
did not have measurements at near-surface depths. Previous studies have shown that no 
single and straight-forward relationship exists between bottom and surface salinity across 
multiple Bay stations (List, 1994), therefore a conversion from mid-depth and surface 
salinity (at a different location) was not performed for CAR. The data obtained at mid-depth 
for CAR were used directly in the training. Data from representative stations are shown in 
Figure 2-7 to Figure 2-10. Correlations used to fill data gaps in the CDEC data and the Bay 
stations are shown in Appendix B and C.  

The filling procedures applied here to the cleaned daily salinity data resulted in a continuous 
block of salinity data from October 1974 to June 2012 for the Western Delta stations, and 
from September 1990 to September 2008 for the Bay stations.  The Bay station records 
could not be extended further back in time because of the lack of continuous salinity data at 
suitable stations. In general, the quantity of continuous salinity data in the Bay is more 
limited that in the Western Delta stations, which have been used for compliance with water 
quality standards over many years. 

2.3.4 Channel Depth  
The role of channel depth was evaluated by training with and without the channel depth 
term, and comparing the results. Channel depth data are available from CDFG on monthly 
time intervals (Figure 2-11). In the analysis performed here, average water depth from 
channel locations in Suisun Bay (500s stations, <514) and Carquinez Strait (400s stations, 
<414) was used. For the training with depth, the length of the dataset is limited by the period 
of record of channel depth data (from 1978 onwards). Therefore, training with depth had 
fewer data points (~12,170 points) compared to training without channel depth as input 
(~13,770 points). 
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Figure 2-2 Daily Rio Vista flow from IEP DAYFLOW. 

 

 
Figure 2-3 Daily Qwest flow from IEP DAYFLOW. 
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Figure 2-4 Correlation between Rio Vista flow and Qwest flow. 

 

 
Figure 2-5 Tidal Range at Golden Gate. 
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Figure 2-6 Correlation between residuals (difference between actual tide and astronomical 

tide) and air pressure at Golden Gate (Data source: NOAA).  

 
Figure 2-7 Cleaned and filled EC data at Collinsville (CLL). 
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Figure 2-8 Cleaned and filled EC data at Emmaton (EMM). 

 

 
Figure 2-9 Cleaned and filled EC data at Mallard Island (MAL). 
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Figure 2-10 Cleaned and filled EC data at Carquinez (CAR) and Point San Pablo (PSP).  

 

 
Figure 2-11 Channel Depth in Suisun Bay (Source: CDFG). 
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2.4 DESCRIPTION OF G-MODEL 
The G-model was developed to predict salinity at specific locations in the Western Delta 
(Denton, 1993). Salinity at different locations is assumed to vary exponentially with 
outflow. Under similar outflow conditions, salinity levels can vary depending on flow over 
preceding time periods. Denton (1993) developed an equation that relates salinity to outflow 
and the antecedent flow to predict salinity at different locations. To take into account the 
flow history and the current salinity – flow relationship, an equation in the form of:  

𝑆𝑆(𝑡𝑡) = (𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑏𝑏)𝑒𝑒−𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝑆𝑆𝑏𝑏  (2) 

was developed, where S is salinity, α, S0, and Sb are fitting parameters which vary with 
location, and G(t) is a function of the antecedent outflow.  

G(t) is defined as:  

𝜕𝜕𝑎𝑎
𝜕𝜕𝑡𝑡

= (𝑄𝑄−𝑎𝑎)𝑎𝑎
𝛽𝛽

 (3) 

It was suggested that the parameter β/G governs the rate at which G approaches its steady-
state (i.e., the response of the estuary to changes in outflow will be slowest at low antecedent 
outflow G). Parameters for α, S0, Sb and β have been calibrated for several stations in the 
Delta including Port Chicago, Chipps Island, Collinsville, and Jersey Point. Results of ANN 
simulations at specific locations were compared to the G-model calculations.  

2.5  DESCRIPTION OF K-M MODEL   
Kimmerer and Monismith (1992) developed an autoregressive equation that relates monthly 
values of X2 (in units of km from Golden Gate) with the net Delta outflow (NDO, in cfs) 
and the previous month’s X2:  

Monthly X2(t) = 122.2 + 0.3278*X2(t-1) – 17.65 *log10(NDO(t)) (4) 

Computed values of X2 from the trained ANNs were compared to the K-M model 
calculations.  

2.6 DSM-2 MODEL   
DSM2 is a one-dimensional mathematical model for dynamic simulation of tidal hydraulics, 
water quality, and particle tracking in a network of riverine or estuarine channels. DSM2 can 
calculate stages, flows, velocities, transport of individual particles, and mass transport 
processes for conservative and non-conservative constituents.  DSM-2 has been used 
extensively by DWR’s Delta Modeling Section for various applications related to flow and 
water quality in the Delta, and specifically for simulating EC over the 1990-2010 period 
(Sandhu, N., 2011, personal communication). In this work, DSM-2 computed values of 
salinity at individual locations and X2 values interpolated from fixed station salinity values 
were compared to ANN calculations.  
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3. RESULTS  
This chapter presents the results of the ANN training, comparison to existing predictive 
models of salinity in the Delta (the G-model, K-M model, and DSM-2), sensitivity to 
changes in flow, sea level, and air pressure, and comparison with historical salinity data 
observed prior to the training period, spanning 1929-1971. 

3.1 ANN NETWORK TRAINING RESULTS  
Results of the ANN training for different models (10 models, as defined in Table 2-1) are 
summarized in Table 3-1 to Table 3-6, by computing the correlation (R) between outputs 
and observed values at distances corresponding to fixed stations. Model outputs are 
compared to observations in time-series form and scatterplots in the attached Appendix D. 

3.1.1 Flow Variables  
 

The influence of flow was evaluated by comparing models that included net Delta outflow 
only, Rio Vista and Qwest flow, and Rio Vista flow and Qwest expressed as function of Rio 
Vista flow. The definitions of the models evaluated for flow (Models 1-3) are shown in 
Table 2-1. The results show clearly improved model results by including two flow terms 
versus the net Delta outflow term, especially for the Sacramento River stations (Table 3-1). 
Changing flow inputs to either Rio Vista and Qwest flow as separate variables or to Qwest 
flow as a function of Rio Vista gave similar results, with slightly poorer fits for the 
Sacramento River model but slightly improved fits for the San Joaquin River model. For the 
purpose of this evaluation, both alternatives are considered equally valid, and Models 2 and 
3 are both acceptable.  Going forward, Model 3 is used for comparison and additional 
evaluation of different inputs. 
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Table 3-1 
Comparison of Observations and ANN Model Outputs (R) for Evaluating Flow Terms   

 Model 1: 
1 Flow Model 

(Delta Outflow) 

Model 2: 
2 Flow Model 

(Rio Vista, Qwest) 

Model 3: 
2 Flow Model 

(Rio Vista, residuals for 
Qwest) 

Sacramento River  

PSP  0.949 0.976 0.965 

CAR 0.964 0.976 0.975 

MRZ  0.949 0.963 0.962 

PCT  0.930 0.951 0.949 

MAL  0.911 0.941 0.940 

CLL 0.852 0.938 0.933 

EMM 0.749 0.881 0.868 

SDI 0.808 0.880 0.861 

RVB 0.457 0.648 0.490 

San Joaquin River  

PSP  0.960 0.960 0.966 

CAR 0.969 0.973 0.975 

MRZ  0.959 0.960 0.961 

PCT 0.947 0.949 0.951 

MAL  0.940 0.939 0.938 

PTS  0.879 0.882 0.883 

ANH  0.927 0.933 0.933 

BLP  0.863 0.868 0.871 

JER  0.859 0.850 0.861 

TSL  0.807 0.706 0.810 

SAL  0.485 0.428 0.496 

 
3.1.2 Tide Variables   

The roles of tide variables were evaluated by decreasing tidal terms from three terms to two 
terms, one term, no tidal term and using the actual and astronomical tide. Definitions of 
models evaluated relating to tidal terms (Models 3 to 8) are shown in Table 2-1. Training 
results show that decreasing tidal terms does not result in significant degradation in the 
training results (Table 3-2, and attached Appendix D showing scatterplots and time series 
plots at fixed locations). Therefore, relatively good training results can be achieved by using 
just one tidal term.  Some degradation was seen for the Sacramento River model when 
inputs were decreased from one tide to no tide. This suggested that including one tidal term 
in the training is beneficial. The astronomical tide (plus a residual term for actual tide) was 
found to be as good as or better than using the actual tide terms, recommending the use of 
the astronomical tide approach because of its easier predictability.  During the use of the 
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ANN models in a predictive mode, the residual between the astronomical tide and actual tide 
can be estimated using the pressure-residual correlation presented earlier.     

Table 3-2 
Comparison of Models Regarding Tide (R) 

 

Model 3: 
Astronomical 

Tide plus 
residual 

Model 4: 
3 Tides 

Model 5: 
2 Tides 

Model 6: 
1 Tide 

(Golden 
Gate Range) 

Model 7: 
No tide 

Model 8: 
1 Tide 

(Golden 
Gate MSL) 

Sacramento River  

PSP  0.965 0.957 0.949 0.959 0.939 0.971 

CAR 0.975 0.970 0.972 0.973 0.961 0.972 

MRZ  0.962 0.956 0.955 0.957 0.942 0.957 

PCT  0.949 0.948 0.942 0.944 0.930 0.943 

MAL  0.940 0.930 0.931 0.923 0.912 0.928 

CLL 0.933 0.930 0.927 0.927 0.894 0.926 

EMM 0.868 0.880 0.860 0.867 0.815 0.865 

SDI 0.861 0.877 0.861 0.863 0.818 0.862 

RVB 0.490 0.642 0.643 0.623 0.562 0.678 

San Joaquin  River 

PSP  0.966 0.949 0.966 0.955 0.964 0.950 

CAR 0.975 0.965 0.974 0.962 0.971 0.964 

MRZ  0.961 0.951 0.958 0.951 0.952 0.950 

PCT 0.951 0.940 0.947 0.923 0.937 0.937 

MAL  0.938 0.927 0.931 0.903 0.918 0.924 

PTS  0.883 0.872 0.877 0.844 0.866 0.861 

ANH  0.933 0.915 0.924 0.860 0.905 0.903 

BLP  0.871 0.856 0.852 0.797 0.841 0.838 

JER  0.861 0.852 0.856 0.786 0.845 0.822 

TSL  0.810 0.824 0.767 0.749 0.815 0.799 

SAL  0.496 0.610 0.519 0.514 0.669 0.568 

 
3.1.3 Antecedent Salinity Input  

The results show that including the antecedent salinity values as inputs improved the 
training results (Models 9 and 10; results in Table 3-3 and Appendix D). The change was 
significant at the eastern stations along both rivers (EMM, RVB, SDI, JER, BLP, PTS, and 
SAL).  These interior stations have lower salinities than the remaining fixed stations 
evaluated, are likely to have longer flushing times, and are more influenced by flows from 
the watershed.   

These models illustrate the benefit of using antecedent salinity to improve fits at specific 
locations, although it is noted that the input requirements are more complex. In particular, 
for predictions performed over long durations, the antecedent salinity is unknown and must 
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be estimated using the ANN resulting in potential errors. An alternative approach, presented 
below, is the use of station-specific ANNs to improve fits at selected locations that are 
considered important from the standpoint of compliance.    

Table 3-3 
Comparison of Models on Antecedent salinity Input (R) 

 
Model 3: 

FFW 

Model 9: 
Previous 30-day 

Salinity Input 
Model 10: 

NARX 

Sacramento River 

PSP  0.965 0.982 0.989 

CAR 0.975 0.982 0.993 

MRZ  0.962 0.988 0.990 

PCT  0.949 0.987 0.988 

MAL  0.940 0.987 0.988 

CLL 0.933 0.984 0.984 

EMM 0.868 0.964 0.947 

SDI 0.861 0.955 0.931 

RVB 0.490 0.642 0.549 

San Joaquin River  

PSP  0.966 0.982 0.995 

CAR  0.975 0.984 0.995 

MRZ  0.961 0.989 0.992 

PCT  0.951 0.988 0.991 

MAL  0.938 0.988 0.991 

PTS  0.883 0.982 0.983 

ANH 0.933 0.985 0.990 

BLP  0.871 0.976 0.982 

JER  0.861 0.972 0.988 

TSL  0.810 0.956 0.982 

SAL   0.496 0.560 0.796 

 
 
3.1.4 Overall Model Performance  

Excluding the models with antecedent salinity input, the best models are Model 2 (using 
astronomical tide, and Rio Vista and Qwest flow as two separate input variables) and Model 
3 (astronomical tide, and Rio Vista flow and Qwest flow as function of Rio Vista). The 
model using Golden Gate mean sea level, Rio Vista flow and Qwest flow as function of Rio 
Vista flow (Model 8) also has relatively good performance.  

Table 3-4 shows the performance (R2 and standard error, SE) of a trained model (Model 3) 
at different locations for daily values and monthly averages.  The monthly averages were not 
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developed from a separate model; the daily data were aggregated to a monthly level for 
comparison.  The results show R2 values of 0.75–0.95 at different locations. Standard errors 
in the model ranged from 276–2,396 µS/cm for daily values. The performance was lower at 
RVB, SAL and TSL. These stations generally have minimal oceanic influence, low EC 
values, and greater noise relative to the mean.  These stations are more challenging to model 
in a distance-salinity framework where the Bay and Western Delta are included.    
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Table 3-4 
Performance of Trained Salinity ANN Model (Model 3) at Different Locations  

ANN Salinity (uS/cm) = Φ1 + Φ2*Observed Salinity (uS/cm) 

 Daily Monthly 

 Φ2 Φ1 R2 SE Φ2 Φ1 R2 SE 

Sacramento River 

PSP  0.951 1750.4 0.932 2177.6 0.979 754.4 0.969 1393.3 

CAR 0.988 318.5 0.952 2078.4 1.014 -355.5 0.981 1264.9 

MRZ  0.908 1542.0 0.925 2323.6 0.933 1115.6 0.949 1832.0 

PCT  0.872 1288.7 0.901 2096.5 0.901 984.8 0.939 1581.5 

MAL  0.917 664.1 0.885 1466.4 0.939 549.9 0.915 1202.6 

CLL 0.795 468.3 0.876 948.4 0.819 396.9 0.920 723.5 

EMM 0.828 137.7 0.788 487.1 0.877 95.2 0.889 326.2 

SDI 0.946 82.7 0.780 451.9 1.002 41.6 0.894 287.7 

RVB 1.458 82.4 0.295 409.7 1.581 53.0 0.563 234.9 

San Joaquin River  

PSP  0.9384 2294.0 0.934 2114.9 0.967 1233.5 0.975 1251.2 

CAR  0.9977 -29.4 0.950 2125.1 1.019 -580.2 0.981 1269.0 

MRZ  0.9041 1635.3 0.924 2329.7 0.929 1208.3 0.950 1811.4 

PCT  0.8827 1158.5 0.904 2088.4 0.914 829.1 0.943 1538.1 

MAL  0.9319 815.8 0.879 1528.5 0.956 689.4 0.912 1246.3 

PTS  0.6837 883.0 0.780 1592.3 0.715 737.5 0.835 1316.6 

ANH 0.9265 318.5 0.871 730.2 0.952 268.9 0.921 543.7 

BLP  0.9516 67.5 0.759 564.3 1.006 11.3 0.856 409.1 

JER  1.0512 -48.3 0.742 435.1 1.088 -74.9 0.855 301.0 

TSL  0.9910 -61.2 0.656 369.0 1.037 -85.7 0.822 236.2 

SAL   1.7296 -153.3 0.246 332.9 2.018 -219.0 0.483 210.7 

 
3.1.5 Time Delay  

The increase of time delay from 30 days to 60 days for a representative model (Model 6 for 
the Sacramento River in Table 2-1) showed some improvements at selected stations but 
showed decreases at other stations (Table 3-5). There is slight improvement in overall 
performance as the time delay is increased from 30 days to 60 days, however, the net 
improvement was not considered large enough given the significant additional 
computational time for ANN training.  Furthermore, the distance-salinity framework, even 
with the longer delay, does not address the issues of poorer performance at eastern stations 
such as EMM, RVB, and SDI.  Given these reasons, the 30-day time delay was retained for 
the distance-salinity ANNs. 
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Table 3-5 
Comparison of Training Results with Different Time Delays (R) 

 30 Days Delay 
(Using 1 Tide term) 

60 Days Delay 
(Using 1 Tide term) 

Sacramento River 

PSP  0.928 0.948 

CAR 0.942 0.951 

MRZ  0.955 0.958 

PCT  0.942 0.946 

MAL  0.883 0.931 

CLL 0.925 0.929 

EMM 0.870 0.851 

SDI 0.872 0.856 

RVB 0.633 0.613 

Overall  0.982 0.986 

 
 
3.1.6 Channel Depth  

The effect of channel depth was evaluated by performing training with and without the 
depth term.  As noted in chapter 2, this was done as part of the initial screening.  Results are 
shown in Table 3-6 for a set of models (identified as A through G to distinguish from the 
final set of candidate models in Table 2-1).  The results demonstrate that training with or 
without channel depth does not affect the quality of the fits significantly or in a systematic 
manner.  Following the initial screening the depth effect was explored by adding this input 
to Model 3, previously identified as a suitable model for salinity prediction.  The results are 
shown in Table 3-7 and Appendix E, and are consistent with Table 3-6.  Based on these 
reasons, depth was not included in the recommended models. It is important to note 
however, that there may be a depth effect on salinity, only that it may have been 
overwhelmed by the flow- and tide-induced variability over daily time scales.    
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Table 3-6 
Comparison of Training Results With and Without Consideration of Depth  

Model Tidal Terms 
Time 
Lag  

Sacramento River 
Model 

Sacramento River 
Model 

San Joaquin River 
Model 

San Joaquin River 
Model 

r  
(without depth) 

r  
(with depth) 

r  
(without depth) 

r  
(with depth) 

A 3 7 0.981 0.981 0.980 0.982 

B 2 7 0.981 0.982 0.980 0.979 

C 1 7 0.979 0.981 0.978 0.979 

D 1 30 0.982 0.984 0.985 0.983 

E No tide 7 0.949 0.956 0.877 0.967 

F Astronomical 
tide 7 0.981 0.997 0.996 0.979 

G Astronomical 
tide 30 0.983 0.985 0.985 0.983 

Table 3-7 
Comparison of Channel Depth Effects Added to Model 3 

 
Model 3: 

No depth term 
Model 3: 

With depth term 

Sacramento River   

PSP  0.965 0.951 

CAR 0.975 0.956 

MRZ  0.962 0.961 

PCT  0.949 0.944 

MAL  0.940 0.955 

CLL 0.933 0.927 

EMM 0.868 0.836 

SDI 0.861 0.841 

RVB 0.490 0.604 

San Joaquin River      

PSP  0.966 0.941 

CAR  0.975 0.951 

MRZ  0.961 0.961 

PCT  0.951 0.942 

MAL  0.938 0.954 

PTS  0.883 0.867 

ANH 0.933 0.917 

BLP  0.871 0.829 

JER  0.861 0.818 

TSL  0.810 0.763 
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SAL   0.496 0.441 

 

3.2 COMPARISON OF RESULTS TO G-MODEL  
The results of using the G-model in the predictions of salinity at selected locations (CLL, 
PCT, and JER) are shown in Figure 3-1 through Figure 3-3. Overall, the G-model does well 
at describing the data at these locations, with poorer fits at the more inland JER location. 
The performance of the ANN models compared to G-model at these locations is better for 
CLL and PCT, except model 7 with no tide input (Table 3-8). The comparison at JER 
showed mixed results, with ANNs doing as well as or slightly poorer than the G-model. It is 
noted that the ANN model is trying to capture salinity at all locations in the Bay and 
Sacramento and San Joaquin Rivers with two models, predicting salinity at different 
locations based on distance. Therefore, the performance at individual locations may be 
lower, as compared to the G-model that was tuned on a site-specific basis.  

 
Figure 3-1 G-model performance at Collinsville (CLL). 
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Figure 3-2 G-model performance at Port Chicago (PCT). 

 

 
Figure 3-3 G-model performance at Jersey Point (JER). 
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Table 3-8 
Comparison of Model Performance to G-model 

Model CLL PCT JER 

1 0.927 0.944 0.808 

2 0.938 0.951 0.850 

3 0.933 0.949 0.861 

4 0.930 0.948 0.852 

5 0.927 0.942 0.856 

6 0.927 0.944 0.786 

7 0.894 0.930 0.845 

8 0.926 0.943 0.822 

9 0.984 0.987 0.972 

10 0.984 0.988 0.988 

G-model 0.904 0.941 0.852 

 
 

3.3 ANN MODELS FOR SPECIFIC STATIONS   
Four representative stations, PCT, CLL, EMM and JER, were considered for the 
development of station-specific ANNs.  As noted above, salinity at some of these stations is 
not predicted as well by the feedforward models, notably EMM and JER.   In this exercise, 
similar flow and tide inputs were used as for the distance-salinity ANNs, however, distance 
was not an input, and there was a single output: the salinity at the desired location.  
Furthermore, the time delay was also increased to explore whether this results in an 
improvement in fit for these locations (as opposed to an improvement in the general salinity-
distance models).   In Table 3-9, results from this exercise are compared to the distance-
salinity models (Models 2 and 9 in Table 2-1) and the fits obtained from the G-Model.   For 
the eastern stations (EMM and JER), there is an improvement in fits using the single station 
feedforward models versus the distance-salinity models, and the fits are better than for the 
G-model.  There is also a small improvement in fit when a longer time delay (60 days versus 
30 days) is considered.  Notably, the improvement in fit with respect to time delay is greater 
for the more eastern stations (CLL, EMM, JER) than for the station closest to Golden Gate 
(PCT).  This may explain why the time delay beyond 30 days was not found to be 
significant in the training for the overall distance-salinity relationship, which contains 
several stations that are west of CLL.  Although the fits from the single-station models are 
not as good as the model using antecedent salinity (Model 9), they are based on boundary 
inputs alone (flow, tides), and, for long forecast periods, easier to use than models that 
require knowledge of antecedent salinity. 
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Table 3-9 
Comparison of Selected Distance-Salinity ANN Models, Station-Specific ANN models, and G-

model 

Model PCT CLL EMM JER 

Model 3, 
Distance-Salinity 0.949 0.936 0.888 0.861 

Model 9, 
Distance-Salinity 0.987 0.984 0.964 0.972 

Single station 
model (30 day 

delay) 
0.953 0.954 0.951 0.945 

Single Station 
Model (60 day 

delay) 
0.960 0.967 0.961 0.967 

G-model 0.941 0.904 N/A 0.852 

 
 

3.4 USE OF TRAINED NETWORK IN X2 CALCULATIONS  
The trained networks can be used to estimate X2 locations based on the calculated salinity at 
specific output locations, using the 2-point method in Kimmerer and Monismith (1992), 
using log salinity versus linear distance for interpolation. The results of X2 calculations 
from Model 3 were compared to X2 derived from the observed data (or “observed X2”) in 
Figure 3-4 for the Sacramento River model and Figure 3-5 for the San Joaquin River model. 
X2 values from both the Sacramento River ANN model and the San Joaquin River ANN 
model showed very good agreement with the X2 derived from the observed data for the 
Sacramento River stations and the San Joaquin River stations (R2 = 0.9762 and R2 = 
0.9671).  
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Figure 3-4 Comparison of X2 calculated from the ANN model and the observed X2 for the 

Sacramento River stations. 
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Figure 3-5 Comparison of X2 calculated from the ANN model to the observed X2 for the San 

Joaquin River stations. 

3.5 COMPARISON TO K-M MODEL   
The calculated X2 from the K-M model was compared to the observed X2 for the 
Sacramento River stations (Figure 3-6) and the San Joaquin River stations (Figure 3-7). The 
correlation between X2 from the K-M model and the observed X2 (R2 = 0.9212 and R2 = 
0.9068) is lower than the correlation between the ANN model and the observed X2 reported 
in the previous section.  Comparison of X2 from the ANN models and the K-M model 
suggested a pattern of slightly lower values from the K-M model (Figure 3-8).  
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Figure 3-6 Comparison of X2 position calculated from K-M equation and the observed X2 for 

the Sacramento River stations. 
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Figure 3-7 Comparison of X2 calculated from the K-M equation and the observed X2 for the 

San Joaquin River stations. 
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Figure 3-8 Comparison of X2 position calculated from K-M model to the ANN models for the 
Sacramento River and the San Joaquin River stations. 

3.6 COMPARISON WITH DSM2 MODEL 
Station-specific ANN model values of salinity (EMM and JER; with a 30-day delay) were 
compared to values obtained from the DSM2 model, run over the 1990-2010 period (Figure 
3-9).  The comparison shows that the station-specific ANNs provide a better fit to the data at 
these stations.  As noted before, the JER station is also more challenging to fit using the G-
model. 

X2 values can be computed from DSM2 salinity values, as long as the values are east of 
Martinez (which forms the western boundary of the DSM2 model).  A comparison of the 
DSM2-computed X2 values are compared to the observed X2 values in Figure 3-10 and 
Figure 3-11.  The fits are reasonable, although not as good as those obtained for the ANN 
models (Figure 3-4 and Figure 3-5).  The standard errors associated with the different X2 
calculation approaches are shown in Table 3-10. 
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Figure 3-9 Comparison of observed daily salinity to values calculated by the DSM-2 and 

ANN models for the EMM and JER stations, shown as a time series (beginning 
October 1, 1974) and scatterplot.  DSM-2 values were available for a 20-year 
period from 1990-2010. 
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Figure 3-10 Comparison of X2 calculated from the DSM2 model to the observed X2 

(Sacramento River). 
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Figure 3-11 Comparison of X2 calculated from the DSM2 model to the observed X2 (San 

Joaquin River). 

Table 3-10 
Standard Error (km) Associated with X2 Estimation 

Standard 
Error (km) K-M Model ANN Model  DSM2 

Sacramento 
River 3.18 1.96 2.73 

San Joaquin 
River 3.43 2.29 3.29 

 

3.7 SENSITIVITY ANALYSIS AND CHANGES DUE TO SEA LEVEL RISE 
A trained ANN (Model 3) was used to project EC over distance under different flow 
conditions from Rio Vista: 1,000, 5,000, 10,000, 25,000, and 50,000 cfs. For the sensitivity 
analysis, the inputs for the ANN model are: distance, Rio Vista flow, Qwest flow, 
astronomical tide, and the residuals between the actual and astronomical tide.  The model 
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was run in steady state where the flow inputs were held constant at different values. The 
values for distance were specified at 10 km intervals. The Qwest flow was specified as a 
function of Rio Vista flow, using the function shown in Figure 2-4. The astronomical tide 
and tide residuals used were averages of the most recent 10 years (2002-2012). The results 
represent EC over distance under different flow conditions for a set condition of average 
tidal conditions. Simulated EC as a function of distance decreases from Golden Gate, with 
lower EC under higher flows (Figure 3-12). Following the presentation in Jassby et al. 
(1995), simulated EC values were plotted as a function of standardized distance (X/X2).  
The approach results in different curves of “self-similarity” as Rio Vista flow increases (e.g., 
25,000 cfs; Figure 3-12).  Although not shown in this form, previous results have shown the 
changing of the horizontal salinity structure at higher Delta outflows (Monismith et al., 
2002). 

Sea level at Golden Gate Bridge has increased at a rate of 0.08 inches per year over the past 
century (Fleenor et al., 2008). In the coming decades, the rate of sea level rise at Golden 
Gate is projected to further increase. The CALFED independent science board (ISB) has 
recommended the Delta Vision effort use a mid-range of sea level rise of 8–16 inches by 
2050 and 28–39 inches by 2100. A trained ANN (Model 3) was used to test the sensitivity of 
changes in EC due to sea level rise of 12 inches (1 foot) and 24 inches (2 feet). The results 
show corresponding increases in EC of approximately 2,500 uS/cm due to sea level rise of 2 
feet and 1,200 uS/cm due to sea level rise of 1 foot at certain locations (Figure 3-14).   The 
changes are greatest at mid-salinity locations.  As noted in the Introduction, data-driven 
tools such as ANNs are best applied within the envelope of the training data.  In this regard, 
an increase of 1 foot is well within the training range of sea level used, and 2 feet, while on 
the edge of the training range, may also be acceptable (Figure 3-15).  Values of sea level 
greater than 2 feet are not acceptable for use with these trained ANNs. 

 
Figure 3-12 Projected EC over distance under different Rio Vista flow conditions (1000, 5000, 

10000, 25000, and 50000 cfs).  

 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0 20 40 60 80 100 120 140

EC
 (u

S/
cm

)

Distance (km)

1000

5000

10000

25,000

50,000

Western Delta Salinity Modeling Using Artificial Neural Networks  
April 2013 3-21 



Results Tetra Tech, Inc. 

 
Figure 3-13 Projected EC as a function of standardized distance (X/X2) under different flow 

conditions. 

 
Figure 3-14 Projected EC over distance due to sea level rise of 1 feet and 2 feet under 

different Rio Vista flow conditions (1000, 10000 and 50000 cfs). Black: base, blue: 
1 ft rise, red: 2 ft rise.  

 
Figure 3-15 Values of sea level used an input for training. The green and purple lines refer to 

a change of 1 foot and 2 feet respectively.  
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3.8 SENSITIVITY TO AIR PRESSURE AND QWEST FLOW 
The difference between actual tide and the astronomical tide to a large degree is explained 
by the air pressure. The air pressure can affect mean sea level. A sensitivity of predicted 
salinity to air pressure (using Model 3) was performed to evaluate effects of this variable for 
different values of Rio Vista flow.  The sensitivity was performed at a range of air pressure 
at 1000 mbar, 1015 mbar, and 1030 mbar, bounding the observed air pressure values.  The 
results show a small sensitivity to air pressure, with a slightly greater effect at lower flows, 
with higher salinity occurring at the same distance for lower pressure (with increased tidal 
range; Figure 3-16).   

A sensitivity analysis was also conducted to evaluate effects of Qwest flow on salinity. 
Qwest flow reflects diversions from Delta and is a function of Rio Vista flow.   A sensitivity 
of salinity to Qwest flow (using model 3) was performed to evaluate effects of this variable.  
The sensitivity was performed at a range of Qwest flow at mean levels predicted from the 
Qwest and Rio Vista flow relationship, and a range of ± 14,000 cfs representing 
approximately 95% prediction confidence intervals.  The results show relatively large 
sensitivity to Qwest flow under different flow conditions (Figure 3-17).   

 

Figure 3-16 Sensitivity of salinity to air pressure (1000, 1015, 1030 mbar), for three different 
values of Rio Vista flow (1,000, 10,000, and 50,000 cfs). 
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Figure 3-17 Sensitivity of salinity to Qwest flow (mean using relationship between Qwest and 

Rio Vista flow, mean-14000 cfs, mean + 14000 cfs). 

3.9 CHANGES IN X2 DUE TO SEA LEVEL RISE 
In this evaluation, the trained ANN model (Model 8 with actual tide at Golden Gate) was 
used to evaluate possible changes in X2 position due to a median sea level rise of 20 inches. 
The results show that due to sea level rise, X2 increases, suggesting movement of the X2 
position landward (Figure 3-18). The projected changes in X2 range between 0–10 km and 
can occasionally exceed this range.  

 
Figure 3-18 Changes in X2 position due to sea level rise of 20 inches. 
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not a validation of the ANN methodology because operational conditions in the Delta over 
this period are different from the 1974–2012 training period; however, to the extent that the 
ANN is an encapsulation of the current conditions in the Delta, the comparison with 
historical data provides insight into how salinity has changed at certain locations, beyond 
just changes in the position of specific isohaline positions that has been explored in Roy et 
al. (2013). 
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The simulated salinity values from the ANN Model 3 were compared to a reconstructed 
historical dataset (Roy et al., 2013) in Figure 3-19 to Figure 3-24. Both the ANN models 
from the Sacramento River (for stations: CLL, EMM and RVB) and the San Joaquin River 
(for stations: ANH, MRZ, PCT, JER and SAL) were used to hindcast the historical salinity. 
Generally the ANN model and the reconstructed dataset agreed on the broad temporal 
patterns in EC at most locations but showed discrepancies in the variations in EC (lower or 
higher peaks in EC from the historical dataset than the ANN model) at a few locations (e.g., 
ANH, JER, EMM, and RVB). The agreement between the ANN model and historical dataset 
at some stations was reasonable with R2 = 0.8579 at MRZ, R2 = 0.9018 at PCT and R2 = 
0.8172 at CLL.  In several cases, however, there was a marked divergence between ANN 
predictions and observations for high salinity values, i.e., for the same boundary inputs, the 
ANN predicted lower salinity than had been observed.  In effect, the ANN is confirming the 
changed spatial pattern in salinities between the training period (1974-2012) and the 
historical period presented here (1929-1971). 
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Figure 3-19 Comparison of ANN simulated and reconstructed historical salinity at ANH, MRZ, 

and PCT.  
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Figure 3-20 Comparison of ANN simulated and reconstructed historical salinity at JER and 

SAL.  
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Figure 3-21 Comparison of ANN simulated and reconstructed historical salinity at CLL, EMM 

and RVB. 
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Figure 3-22 Comparison of ANN simulated and reconstructed historical salinity at ANH, MRZ 

and PCT.  
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Figure 3-23 Comparison of ANN simulated and reconstructed historical salinity at JER and 

SAL.  
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Figure 3-24 Comparison of ANN simulated and reconstructed historical salinity at CLL, EMM 

and RVB.  
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A trained ANN model (Model 3) was applied in a multi-day forecast mode in a manner that 
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compared to the actual salinity data as a function of distance (Figure 3-25).  Good agreement 
across many days was demonstrated through this exercise giving confidence to its 
application for future periods.  
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Figure 3-25 Comparison of feedforward ANN (Model 3) forecast and observed salinity from 0 

to 150 days.   

 

3.12 LONG TERM SALINITY PROJECTIONS USING FEEDFORWARD AND AUTOREGRESSIVE MODELS 
As noted before, for long-term forecasts, an autoregressive model needs to estimate the 
antecedent salinity, which must be estimated using the model itself.  This is somewhat more 
complex from the input standpoint, and raises the issue of prediction errors that continue to 
be propagated through time.   

An independent evaluation of selected feedforward (Model 3) and autoregressive (Model 9)  
models was performed by considering their performance over multi-year runs, as might 
occur during a planning application.  Specifically, a 10-year forecast was performed 
beginning on October 1, 1974.  Time series plots for representative stations for both models 
are shown in Figure 3-26 through Figure 3-29.  In general, the autoregressive model does 
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not perform as well in the forecast mode as was shown in training.  In most instances, the 
feedforward model performs similar or better than the autoregressive model. The main 
difference between the training and forecast performance of the autoregressive model is the 
use of observed daily salinity versus model-simulated antecedent salinity, when extended 
over multiple years.  

 
 

 
 

Figure 3-26 Comparison of feedforward ANN (Model 3), upper panel, and autoregressive ANN 
(Model 9), lower panel, forecast for a 10-year period starting October 1, 1974 (CLL 
station).  Blue =  observed data, red = model simulation. 
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Figure 3-27 Comparison of feedforward ANN (Model3), upper panel, and autoregressive ANN 
(Model 9), lower panel, forecast for a 10-year period starting October 1, 1974 
(EMM station).  Blue =  observed data, red = model simulation. 
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Figure 3-28 Comparison of feedforward ANN (Model 3), upper panel, and autoregressive ANN 

(Model 9), lower panel, forecast for a 10-year period starting October 1, 1974 
(MAL station).  Blue =  observed data, red = model simulation. 
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Figure 3-29 Comparison of feedforward ANN (Model 3), upper panel, and autoregressive ANN 

(Model 9), lower panel, forecast for a 10-year period starting October 1, 1974 
(MRZ station).  Blue =  observed data, red = model simulation. 
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4. SUMMARY AND RECOMMENDATIONS 
This work used the four-decade-long record of observed daily salinity in the Western Delta 
to develop ANNs for salinity as a function of distance using various boundary inputs. Over 
this period, the system has experienced a range of hydrologic and operational conditions, 
which are embodied in the trained ANNs. There is confidence that the trained ANNs should 
represent salinity behavior over a similar range of conditions, although the behavior under 
conditions that are well outside the training envelope is not well-defined. This limitation 
applies to all data-driven tools, and the availability of the extensive data set in this region is 
central to the future utility of the ANN approach. Importantly, this work differs from prior 
salinity ANN development in the Delta region, where the training has been performed on 
synthetic data generated from the DSM-2 model (Wilbur and Munevar, 2001; Mierzwa, 
2002; Seneviratne et al., 2008). 

A major focus of the work was the testing of different input combinations to identify 
suitable models for predicting salinity as a function of distance. Major inputs that were 
examined included the following: net Delta outflow, flows past Rio Vista on the Sacramento 
River and past Jersey Point on the San Joaquin River (identified as Qwest in the 
DAYFLOW model); tidal terms at different locations and astronomical tide at Golden Gate; 
and channel depth in the Western Delta. For each combination, two models were developed, 
one for the Sacramento River and one for the San Joaquin River. The comparison at 
individual stations as time series and scatter plots was used to evaluate the performance. The 
outcomes of the training may be summarized as follows: 

• An initial evaluation was performed by consideration of the depth term. Over a range 
of other input combinations, this term was not found to consistently improve model 
fits. Although a relationship between depth and salinity deviations from the G-model 
for salinity was noted on an annual basis, it appears that the daily variations in 
salinity that were the focus of the ANN training may have overwhelmed any gradual 
changes relating to depth. Based on this initial evaluation the depth term was not 
considered in subsequent model selection.  

• The results suggested that including both Rio Vista and Qwest flows in the training 
improved the results versus use of only the net Delta outflow term. Models that used 
both flows as inputs, or those that used the Rio Vista flow and a residual between the 
Rio Vista-Qwest flow correlation as inputs performed similarly, and either 
formulation of the flow inputs may be acceptable for future application.  For this 
work, Model 3 (using the Rio Vista-Qwest flow correlation) was highlighted for 
additional comparison and evaluation. 

• The comparison of models with respect to different tidal inputs suggests that 
relatively good agreement between observed and model predicted values can be 
achieved through using just one tidal term either as tidal range, the astronomical tide 
or as the actual tide.  
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• Including antecedent salinity at Delta stations as an input improved the training 
results, especially at the eastern locations more distant from the ocean influence.  

• Without antecedent salinity as an input, feedforward ANNs with a 30-day delay 
using the astronomical tide (specifically Model 3) result in relatively good agreement 
with data across much of the salinity gradient, except lower salinity stations further 
away from Golden Gate.   

• For representative eastern stations, feedforward ANNs were developed specifically 
for these stations, and shown to perform much better than the distance-salinity 
ANNs. 

• For future application, some combination of distance-salinity and station-specific 
ANNs may be suitable to best represent the observed values across a wide range of 
distance from Golden Gate.  

The observed data and trained ANNs were compared to three existing models for salinity 
prediction in the Delta: the K-M model (for X2) and the G-Model (for salinity at fixed 
locations), both of which were calibrated using data until the early 1990s (Kimmerer and 
Monismith, 1992; Denton and Sullivan, 1993), and the DSM-2 model for Delta 
hydrodynamics and water quality.  Key aspects of the model inter-comparison may be 
summarized as follows: 

• The K-M model and the G-model performed reasonably well when compared to the 
overall data set (1974–2012), which typically included two additional decades of 
data than had been used for the original calibration of the models.  

• The trained ANNs displayed better performance compared to the K-M model and the 
G-Model, when used to predict the relevant quantity (either X2 or salinity). At an 
eastern station, Jersey Point (JER), the ANN distance-salinity fit was not 
overwhelmingly better than the G-model. However, in this instance the fits obtained 
from the station-specific ANNs were considerably better than the G-model results, 
underscoring the fact that salinity at eastern stations may be affected by key inputs in 
a different manner than stations closer to the oceanic influence.  

• Salinity values at selected eastern stations were fit better using the station-specific 
ANNs than using DSM2 output at the same locations.   

• The X2 position derived from the ANN models for the Sacramento River and the 
San Joaquin River stations agreed very well with the observed data, and showed 
better agreement with the observed data than X2 derived from either the K-M model 
or from the DSM-2 model. The DSM2 model could be used for X2 interpolation 
only when its position was east of Martinez. 

It should be noted that the ANNs provide information that goes beyond existing tools such 
as the K-M model and the G-model, i.e., information on salinity structure in the estuary (not 
just X2 position obtained from the K-M model), and information on salinity at arbitrary 
distances (not calibrated to fixed stations as currently done with the G-Model). The ANN 
model outputs may be further evaluated against surface salinity results produced from three-
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dimensional hydrodynamic models of the Bay (Gross et al., 2007, 2010), although these 
evaluations were beyond the scope of the present work. 

The trained ANNs, specifically one feedforward application and one autoregressive 
application, were applied in a forecast mode, with predictions made over 10 years given 
relevant inputs (Models 3 and 9).  It was found that over extended periods, the feedforward 
network made predictions as good as or better than the autoregressive networks, in large part 
because the autoregressive networks used model-generated antecedent salinity values, and 
errors in these tend to add to the errors in prediction.  Although the long-term application of 
the autoregressive networks did not exhibit any unstable behavior, the results were not as 
good as shown during training, when antecedent salinity values were based on actual 
observations.  To address the limitation of the feedforward networks in describing salinity at 
eastern stations, it is proposed that station-specific salinity ANNs be developed for a limited 
numbers of stations that are especially important from the standpoint of compliance.  While 
station-specific ANNs are expected to fit data better at all stations (even western stations), 
they are not suggested as a replacement for the distance-salinity ANNs.  This is because, (a) 
the distance-salinity ANNs are a more efficient representation of the data and encapsulate 
the behavior across multiple stations, and (b) they can be used to provide insight into the 
response of the horizontal salinity structure as a function of flow and tidal inputs in a more 
flexible manner than possible for individual ANNs for each station. 

The ANNs trained using the modern EC data were also compared against historical grab 
sample data that have been compiled in a companion study (Roy et al., 2013). The historical 
data span 1921 to 1971 and were measured as chlorinity several times each month at 
different points in the tidal cycle. They were converted to daily average EC using conversion 
factors for tidal effects and for chloride to EC, and filled using linear interpolation. This 
hind-cast comparison is not a strict validation of the ANN methodology because operational 
conditions in the Delta over 1921–1971 are different from the 1974–2012 training period; 
however, the comparison provides insight into how salinity has changed at certain locations, 
beyond just changes in the position of the isohalines that has been explored in Roy et al. 
(2013). The ANN application in this comparison (starting in 1929) showed reasonable fits to 
values at western (higher salinity) stations, although the performance was poor at eastern 
(lower salinity) stations. In some cases there was a marked divergence between ANN 
predictions and observations for high salinity values: for given flows and tides, the ANN 
model based on current Delta conditions predicted lower salinities than were observed 
historically.   

This study revisited the issue of salinity predictions in the Western Delta using data-driven 
approaches, as opposed to mechanistic model-based approaches, after a gap of about two 
decades, during which the quantity of available data has doubled, and tools such as ANNs 
have become more widespread in the water resources discipline. Using a variety of possible 
inputs, this work has identified a candidate ANN, noted above as Model 3, that may be 
applied in a predictive mode in the future for representing the horizontal structure of surface 
salinity in the estuary. An important finding of this evaluation is that the daily salinity fits 
are of high enough quality that these may be applied directly for both near-term forecasts as 
well as aggregated to produce monthly values for long-term planning simulations.  Improved 
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fits at selected eastern stations may be obtained by using station-specific ANNs rather than 
ANNs that incorporate distance into predictions. 
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