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EXECUTIVE SUMMARY 
The goal of this work was the development of an Artificial Neural Network (ANN) 
model of salinity in Suisun Bay and the western Delta using as input the following 
variables: flows past Rio Vista on the Sacramento River and past Jersey Point on the San 
Joaquin River (identified as Qwest), astronomical tide, and the residual between actual 
and astronomical tide. These specific inputs were selected based on an evaluation of a 
wider range of input sets in earlier work.  

Available salinity data for this work were based on a parallel data compilation and 
cleaning effort and cover water years 1922–2012. Data from the early period (1922-1971) 
are mostly grab sample measurements, and from 1965-2012 include continuous 
measurements as electrical conductivity (EC). Using both data sources, a daily record of 
salinity at multiple stations was created, albeit with some gaps in the early part of the 
record.  

Two approaches were used for ANN training, either using the observed salinity directly, 
or fitting a model to the salinity data and training the model parameters using an ANN.  

• In Approach 1, ANNs were developed using station-level data for the period where 
daily continuous records of salinity (using on-line conductivity sensors, as opposed 
to grab samples) were available with minimal data gaps (October 1974 to June 2012, 
WY 1975-2012).  

• In Approach 2 the Delta Salinity Gradient (DSG) model (Hutton 2013) was used to 
fit to observed salinity, and the best fit parameters of the DSG model were used for 
the ANN training. This has two major advantages: it explicitly incorporates the basic 
conceptual model of salinity transport in the estuary, with a strong west-to-east 
gradient, and it allows for variations in the presence/absence of data at individual 
stations.  

Separate ANNs were developed for stations along the Sacramento and San Joaquin river 
reaches.  

Using the trained ANNs, the outputs were compared to EC observations at individual 
stations and to the position of the X2 isohaline. Approach 1 fits were better (typical R2 > 
0.95 for the Sacramento River model, and R2 > 0.92 for the San Joaquin River model). 
Approach 2 fits as R2 were 0.9 or better for both models. In both cases, some eastern 
stations were not fit as well, and for a subset of stations (Emmaton and Jersey Point) of 
importance for current salinity compliance, station-specific ANNs were developed to 
achieve good fits.  
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Model evaluation was also performed for X2 interpolated from observed data and ANN-
predicted X2. The overall fit of Approach 1 ANN-X2 to interpolated X2, represented as 
R2 was 0.94 and 0.91 for the Sacramento and San Joaquin River models. The overall fits 
of the Approach 2 ANN-X2 to interpolated X2 values, were slightly better (R2 = 0.95 and 
0.93 for the Sacramento and San Joaquin River models).  

Additional comparisons of the X2 isohaline location from two other models were also 
evaluated (the Kimmerer-Monismith equation and the DSG equation with constant 
parameters) to compare against ANN performance. The interpolated data were fit quite 
well with the daily DSG model, although the R2 values were slightly lower than the ANN 
model. The K-M fit was not as good, and was also limited by the ability of this model to 
represent negative Delta flows. The daily DSG model fits can be improved with bias 
correction as an alternative to future applications. For station specific application, the 
ANN approach was found to be a useful alternative to methods that are focused on the 
entire gradient. Future application may also consider more than one modeling approach 
to calculate X2 for specified conditions to obtain more robust estimates of X2 and salinity 
at specific stations.  
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1. INTRODUCTION  
The abundance of several biological populations in the eastern reaches of San Francisco 
Estuary is related to the location of the low salinity zone, which in turn depends on 
freshwater outflows from the Delta (Jassby et al., 1995). The position of the 2 parts per 
thousand (ppt) bottom salinity isohaline, termed X2, is a key component of the salinity 
standard in the estuary (State Water Resources Control Board, 2006). Under current 
regulations, it is interpolated as an equivalent surface salinity from fixed monitoring 
stations and reported as a distance from Golden Gate Bridge. Besides the X2 position, 
which is largely driven by habitat considerations, there are also salinity compliance 
points further east in the Delta for municipal and agricultural beneficial uses. Salinity 
behavior in an environment such as the San Francisco Bay Delta estuary is known to be 
dynamic and dependent on tides as well as current and antecedent freshwater flows 
(Harder, 1977; Denton, 1993).  

In support of inflow management in Suisun Bay and the western Delta and for 
retrospective evaluation of salinity over changing conditions, there is a need to develop 
tools that provide information on salinity at specific locations and the X2 position as a 
function of other inputs that can be predicted or defined. Over the past two decades, 
various modeling frameworks have been applied to the prediction of the X2 position and 
of the salinity patterns in the Delta and San Francisco Bay, ranging from simple statistical 
models to complex three-dimensional hydrodynamic models, as reviewed briefly in the 
following chapter.  

The focus of this work is on artificial neural network (ANN)-based modeling for salinity. 
The ANN approach contains some of the black-box aspects of all statistical models; 
however, in the Delta and elsewhere, ANN-based prediction frameworks have shown the 
ability to represent complex processes well, and may be considered an alternative to 
conventional statistical methods and mechanistic models. ANNs use simple elements 
(neurons) and connections between elements using a range of functional forms to 
represent complex real-world data. The ANN methodology has found broad application 
in the prediction and control of complex systems, specifically in the water resources 
domain (Maier et al., 2010; American Society of Civil Engineers, 2000). An ANN can be 
trained, in a manner similar to calibrating a model, to perform a particular function 
through adjusting values that form the connections between elements (weights). The 
ANN approach has been used broadly in the Sacramento–San Joaquin Delta for 
predicting salinity at various interior locations by the California Department of Water 
Resources (Finch and Sandhu, 1995; Sandhu et al., 1999) and for predicting salinity and 
impacts of sea level rise (Seneviratne et al., 2008). The salinity ANNs being developed 
by the Department of Water Resources are being trained on DSM2 results that may 
represent historical or future conditions, through taking into account individual flow 
components and operational parameters as model inputs. 
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The goal of this work is the development of an ANN model considering a wider range of 
inputs than used in the most common statistical modeling frameworks for salinity in this 
region (e.g., Kimmerer and Monismith, 1992). This work builds on a prior effort by us to 
develop a salinity ANN model (Chen and Roy, 2013). In the preceding work, the salinity 
data used were daily values collected over 1974-2012. A major focus of the work was the 
testing of different input combinations to identify suitable models for predicting salinity 
as a function of distance. Key inputs that were examined included the following: net 
Delta outflow, flows past Rio Vista on the Sacramento River and past Jersey Point on the 
San Joaquin River (identified as Qwest in the DAYFLOW model); tidal terms at different 
locations and astronomical tide at Golden Gate; and channel depth in the Western Delta. 
For each combination, two models were developed, one for the Sacramento River and 
one for the San Joaquin River. The outcomes of the training suggested that including both 
Rio Vista and Qwest flows in the training improved the results versus use of only the net 
Delta outflow term. Models that used both flows as inputs, or those that used the Rio 
Vista flow and a residual between the Rio Vista-Qwest flow correlation as inputs 
performed similarly, and either formulation of the flow inputs was considered acceptable 
for future application. The comparison of models with respect to different tidal inputs 
suggested that relatively good agreement between observed and model predicted values 
could be achieved through using one or two tidal terms either as tidal range, the 
astronomical tide, or the residual between actual and astronomical tide. Finally, although 
the ANNs for each river did well at representing the salinity gradient, some eastern 
stations were not as well represented. Some of these are important compliance stations 
and were better represented by single-station ANNs. All of these initial findings were 
used to guide this phase of the ANN training.  

The data used in this study span a much broader range (1921-2012) than used in our 
preceding study and are based on a parallel data collection effort (Roy et al., 2014) that is 
summarized briefly here. Daily salinity data were compiled for the longest record 
available in Suisun Bay and the western Delta, combining historical grab samples and 
modern electrical conductivity samples. Grab sample data from historical documents data 
were based on a compilation from documents from October 1921 to June 1971 from the 
California Department of Public Works (DPW) and its successor agency, the Department 
of Water Resources (DWR). Data from scanned paper copies of these bulletins were used 
to develop an electronic database of salinity throughout the Delta and portions of San 
Francisco Bay. In addition, modern databases were queried for data in Suisun Bay and 
the western Delta, reported as continuous measurements of electrical conductivity, 
including: 1) California Data Exchange Center (CDEC); 2) the Interagency Ecological 
Program (IEP) water quality data; and 3) USEPA’s STORET dataset. The modern data 
were further supplemented by U.S. Geological Survey data for stations in San Francisco 
Bay to account for situations where the low salinity zone extends into the Bay, typically 
under high flows. The combined data gathering effort resulted in a master database 
containing salinity data from October 1921–September 2012, i.e. water years 1922–2012. 
Going forward, where differentiation is needed, the grab sample data are referred to as 
Bulletin 23 data and the continuous EC data are referred to as CDEC data, although it is 
recognized that both groups contain data from other sources as well.  
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A significant effort was expended to “clean” the data to remove values that appeared to 
be clearly inconsistent with other values. Following this cleaning, data gaps stations were 
filled by interpolation to create the longest possible salinity record without data gaps. 
Consideration of the long data series is an important factor, because ANNs, being data-
driven constructs, perform best within the training range, with poor or undefined behavior 
when extrapolated beyond the training range. The long data set developed here has the 
advantage of providing the ANN with a wide variety of hydrologic conditions for 
training. 

To fully evaluate the benefits of the ANN modeling approach, we also compared the 
results of this work with an analytical model of salinity that is an alternative tool for 
representing salinity behavior in Suisun Bay and the western Delta (Hutton, 2013) and 
with a daily version of the Kimmerer-Monismith (K-M) autoregressive model (Kimmerer 
and Monismith, 1992). 

The remaining sections of this report describe previous work on salinity modeling in San 
Francisco Bay and the Delta (Chapter 2), the ANN modeling approach used (Chapter 3); 
results from the ANN models, comparison against existing tools and exploration of 
sensitivity of specific inputs such as flows and sea level (Chapter 4); and a summary of 
key findings and recommendations on the use of selected models in future applications 
(Chapter 5). 
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2. PRIOR MODELING OF SAN FRANCISCO 
BAY AND DELTA SALINITY 
Given the importance of salinity in the San Francisco Bay Delta estuary to habitat, 
municipal, and agricultural beneficial uses, a variety of quantitative analyses have been 
performed to describe salinity behavior in the region for different applications. A brief 
summary of the commonly used tools is presented below.  

2.1 STATISTICAL MODELING  
A widely used tool is the autoregressive equation between Delta outflow and X2 position, 
termed the K-M model (Kimmerer and Monismith, 1992; Jassby et al., 1995). This 
equation was calibrated using salinity data in the Bay and Delta from October 1967 to 
November 1991, the most complete data set available at the time of publication. The 
monthly flow-X2 relationship (Kimmerer and Monismith, 1992) has been expressed as1:  

X2(t) = 122.2 + 0.328X2(t-1) -17.6 log(Qout(t))  Eq 2.1 

where Qout is the mean monthly Delta outflow in terms of cubic feet per second (cfs) and 
X2(t-1) is the previous month isohaline position expressed as km from Golden Gate. As a 
general tool for estimating X2 under different flow conditions, the above equation is used 
widely (referred to as the K-M equation). This equation has also been proposed using an 
exponent form of the Qout term, rather than the logarithm, albeit using the same surface 
salinity dataset as in the original analysis (Monismith et al., 2002), although this is in less 
common use than the K-M equation.  

2.2 ONE-DIMENSIONAL EMPIRICAL MODELING  
An empirical model of salinity was also developed by Denton (1993) (updated Denton, 
1994), utilizing boundary salinity values representative of the downstream ocean and 
upstream riverine environments, and a concept called antecedent outflow, representing 
flow time-history in the Delta. The equation can be represented as: 

S = (So -Sb) * exp[-α* G(t)] + Sb Eq. 2.2 

where S is the salinity at a given location, So and Sb are the ocean and river boundary 
salinities, and G(t) is the term representing the flow history, and α is an empirically-
determined constant, computed for selected Delta locations based on field data. The G-
model estimates salinity at individual locations, rather than the X2 position estimated 
using the K-M equation. This is important because salinity standards are described in 
terms of electrical conductivity at individual stations in the current Water Quality Control 

1 A slightly different intercept for this equation has also been reported for flow in m3/second: 
X2(t) = 95 + 0.33X2(t-1) -17.6 log(Qout(t)) (Jassby et al., 1995) 
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Plan, e.g., Emmaton on the Sacramento River and Jersey Point on San Joaquin River 
(State Water Resources Control Board, 2006). 

A hybrid of the K-M equation and G-model, proposed by Hutton (2013), is called the 
Delta Salinity Gradient (DSG) model. In this model, by assuming the modified form of 
the X2 equation (Monismith et. al. 2002) and steady-state conditions, X2 is related to 
antecedent outflow as follows: 

X2(t) = Ф1 * G(t) Ф2  Eq. 2.3 

where Ф1 and Ф2 are empirically determined coefficients. Salinity is then estimated at 
individual locations through the following relationship: 

S = (So -Sb) * exp[τ * (X/X2) - 1/Ф2 ] + Sb  Eq. 2.4 

where S is the salinity at a given location in mS/cm, So and Sb are representative 
downstream ocean and upstream riverine boundary salinities, and τ= ln[(2.64 -Sb)/(So -
Sb)]. This equation can be used to determine salinity at any longitudinal distance from 
Golden Gate (X) given X2 and Ф2 and assuming reasonable values for So and Sb. 

2.3 NUMERICAL MODELING  
Numerical models of hydrodynamics and salinity, albeit more complex and demanding of 
computer time and user expertise, have also been considered for different applications.  

The one-dimensional link-node modeling of hydrodynamics and salinity of the Delta 
using the California Department of Water Resources’ (DWR) Delta Simulation Model 
(DSM2) is used widely to represent salinity under different hydrologic conditions, and 
for changes from background conditions, such as for increases in sea level at the western 
boundary, or for consideration of changes to the Delta studies as part of the Bay Delta 
Conservation Plan (BDCP) (http://baydeltaconservationplan.com/). The DSM2 model is 
also used extensively for DWR’s annual reporting to the State Water Resources Control 
Board. 

Resource Management Associates (RMA) has developed a two-dimensional model of 
salinity, the RMA-Bay Delta model. Used extensively, this model has recently been used 
to examine the effects of sea level rise as part of the BDCP effort (Administrative Draft, 
March 2013, Appendix 29A).  

Finally, three-dimensional modeling for salinity and flow in the entire bay and estuary 
has been performed for evaluating specific projects and for understanding the 
mechanistic processes of salinity intrusion under different flow and tidal conditions 
(Gross et al., 2007, 2010).  

Although theoretically rigorous, the computational demands of the two- and three-
dimensional models limit application within planning simulations that run over decades 
and consider multiple scenarios. 
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2.4 ANN-BASED MODELING  
ANNs, the specific focus of this study, have also been used to represent flow and salinity 
in the Delta (Finch and Sandhu, 1995; Wilbur and Munevar, 2001; Mierzwa, 2002; 
Seneviratne et al., 2008). The ANN approach has also been used extensively by DWR to 
represent salinity at different locations in the Delta, with the ANNs being trained on 
synthetic data generated from DSM2, including scenarios that are different from 
current/historical conditions and employ changes in sea level and tidal amplitude. 
Because ANNs run significantly faster than the mechanistic models they are trained on, 
they can be employed within planning models, such as the CALSIM model, where there 
is a need to return results rapidly. When used in this manner, ANNs are emulating DSM2 
behavior, and not serving as an independent model of salinity. 
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3. ARTIFICIAL NEURAL NETWORK 
MODELING APPROACH  
This section provides an overview of the ANN modeling approach and the data used. As 
presented in Chapter 1, this work builds on the initial ANN modeling effort presented in 
Chen and Roy (2013) in defining the model structure and inputs that are used. With 
respect to outputs, in the original work we used salinity data at specific stations for 
training. Thus, given a set of inputs of flows, mean sea level, one or more tidal terms, and 
distance from Golden Gate, the ANN was trained for salinity at different locations. This 
approach was suitable for the original application because a complete daily time series of 
salinity across a consistent set of stations was available after a filling procedure was 
followed. In principle, the same method can be applied to the significantly enhanced data 
set from Water Year (WY) 1922-2012. However, because of the nature of the grab 
sampling, there are substantial gaps in the daily salinity even with our best efforts at 
filling. Therefore, two approaches were used, limiting the station-based approach to the 
period where continuous EC data are available, and applying a salinity model to the data 
before fitting: 

• Approach 1, to retain the good quality of the fit observed in the previous effort, 
ANNs were developed using station-level data for the period where daily continuous 
records of salinity (using on-line conductivity sensors, as opposed to grab samples) 
were available with minimal data gaps (October 1974 to June 2012, WY 1975-2012).  

• Approach 2 integrates the Delta Salinity Gradient model (Hutton 2013) with the 
ANN approach. In this method, the DSG model was used to fit to observed salinity, 
and the best fit parameters of the DSG model were used for the ANN training. This 
has two major advantages: it explicitly incorporates the basic conceptual model of  
salinity transport in the estuary, with a strong west-to-east gradient, and it allows for 
variations in the presence/absence of data at individual stations.  

As in the previous work, separate ANNs were developed for stations along the 
Sacramento and San Joaquin river reaches. Details of the ANN modeling approach are 
presented in this chapter. Analyses were also performed using the station-based approach 
for WY 1930-2012, but were generally not as good as for Approach 1 and 2, as defined 
above, and are therefore not presented in this report.  

3.1 ARTIFICIAL NEURAL NETWORK (ANN) MODEL STRUCTURE 
3.1.1 Model Inputs  

Although two alternative methods for salinity modeling were considered, the inputs to the 
ANNs remained the same, and were directly based on performance of multiple 
combinations of inputs that were evaluated in Chen and Roy (2013). An overview of 
these model structures, presented in Table 3-1, demonstrates various combinations of 
flow and tidal inputs. Ten different model structures (labeled Model 1 through Model 10) 
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were evaluated based on the quality of the fit and the parsimony of the input variables. 
Based on both these conditions, Model 2 was identified for further use and was 
considered as the primary structure in the present work. The Model 2 inputs used in the 
training included:  

• Station distance (km) from Golden Gate  

• Flow variables – Rio Vista flow (on the Sacramento River) and Qwest flow (on the 
San Joaquin River downstream of Jersey Point). Daily values for these flow variables 
were obtained from the DAYFLOW model from WY 1930 to the present. Additional 
daily flow data covering water years 1922 through 1929 were developed from data 
reported in the Bulletin 23 series (Paul Hutton, personal communication). With these 
additional data, a complete flow record corresponding to the salinity data was 
available. 

• Ocean boundary – astronomical tide and a residual between astronomical tide and 
actual tide. The residual was correlated with the atmospheric pressure and when used 
in a predictive mode, the atmospheric pressure can be used to estimate the tidal 
residual.  

• A time lag of 30-120 days was considered for the various inputs in the present study, 
i.e., training the ANN with input values of the last n days (where n = 30, 60, or 120). 
To simplify the ANN input requirements, a time lag of 30 days was generally used, 
when no improvement with longer time lags was indicated. However, a longer time 
lag was retained for station-specific ANNs developed for Emmaton and Jersey Point 
(60-day delays for both station-specific ANNs were used). For these ANNs there was 
an improvement over the 30-day ANNs. 

3.1.2 ANN Model Structure  
The dynamic nature of flow and salinity in Suisun Bay and the western Delta requires a 
network structure that takes into account the time-series of inputs. Although other 
network structures were used in different applications, the multi-layer perceptrons 
(MLPs) are by far the most popular network structures used in water resource 
applications to date, representing more than 90% of the peer-reviewed applications in the 
water resources field (Maier et al. 2010). For this reason, the feedforward MLP network 
was selected for this application.  

For much of this analysis, ANNs were developed by accounting for station distance 
(integrating all stations along a river). However, based on the results of these salinity-
distance ANNs, and poorer performance at some eastern locations, station-specific ANNs 
were developed for selected stations. 

3.1.3 Outputs for Training  
For each input set, two separate ANN models were developed for the lower Sacramento 
River and lower San Joaquin River stations. The training was based on salinity at fixed 
stations on each river. Training stations for the Sacramento River ANN model were at a 
number of locations along the lower Sacramento River and several stations in the Bay. 
Training stations for the San Joaquin River ANN model were at a number of locations 
along the lower San Joaquin River and several stations in the Bay.  
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Both the Bulletin 23 dataset (WY 1922-1971) and the continuous EC CDEC dataset (WY 
1965-2012) were used in the training. As discussed above, two approaches were used in 
the ANN training:  

1. Approach 1, training using the salinity dataset at specific stations, without 
preprocessing with a model, but limited to the period with continuous salinity data as 
EC, October 1974 to June 2012;  

2. Approach 2, training by fitting the daily data using the Delta Salinity Gradient 
(DSG) model (Hutton, 2013), Equations 2.3 and 2.4. X2 in the equations is obtained 
by fitting a second ANN to the interpolated data. 

The training for the station-based approach in Approach 1 was also fine-tuned through 
applying a “nudging” technique on distance. This step acknowledges that the reported 
distance for a given station may not be exact or that a station behaves in a certain manner 
because of the particular hydrodynamics of estuarine flow at the location. The purpose of 
the nudging was to vary the distance within a certain range (here ± 3 km at 0.1 km 
intervals), to examine whether the prediction for EC could be improved. The nudging 
evaluation was performed using data from 1965-2012. 

The results of the training are individual ANNs that predict salinity as a function of 
distance for the Sacramento and San Joaquin Rivers, based on inputs of flow, mean sea 
level, and tide.  

When using Approach 2, the results of the training also included intermediate ANN 
models that predicted the three parameters in Equation 1, which were then combined with 
a model for X2 to predict salinity at any arbitrary distance.  

In addition to ANNs that were used to represent the entire salinity gradient, ANNs were 
also developed for two stations separately because of their importance in the existing 
salinity compliance regulations in the 2006 Water Quality Control Plan for the San 
Francisco Bay/Sacramento-San Joaquin Delta Estuary: Emmaton on the Sacramento 
River, and Jersey Point on the San Joaquin River. These stations were fit using data over 
the period used for Approach 1 (1974-2012). 

3.1.4 ANN Training Method 
In this work, the data were divided in the following manner: 70%, 15%, and 15% for 
training, validation and testing, respectively. The training and validation data were used 
together in calculating the biases and weights that form the ANN, and the test data set 
were completely independent for additional evaluation of model performance. The dates 
for training, validation and testing were randomly selected from the entire dataset for 
each training cycle.  

The ANN training used the back-propagation (Levenberg-Marquardt back-propagation) 
method for error minimization. For each model structure, the training was repeated until a 
correlation of >0.98 was obtained. The ANN training was performed the Neural Network 
Toolkit within the Matlab programming environment. 
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3.2 MODEL INPUT DATA  
3.2.1 Flow  

Flow data used in the ANN models were obtained from the DAYFLOW program for 
WYs 1930-2012, with additional data provided by Paul Hutton (personal communication) 
for WYs 1922-1929. The role of freshwater flow in regulating salinity in the Delta was 
evaluated by using Rio Vista and Qwest flow as two separate terms in the training.  

3.2.2 Tide 
The astronomical tide and the actual tide at Golden Gate used in the training were 
obtained from the National Oceanic and Atmospheric Administration (NOAA) (mean 
seal level, MSL at hourly time steps). When using the astronomical tide, the tides are 
expressed as the astronomical tides and residuals between the actual and the astronomical 
tides. The residuals between actual tide and the astronomical tide were found to be a 
function of atmospheric pressure (Figure 3-1). Residuals between the actual and 
astronomical tides were not found to be correlated to other meteorological variables. The 
correlation between tidal residuals and atmospheric pressure allows use of the model in a 
predictive mode, given knowledge of astronomical tide and forecasts of pressure. 

3.2.3 Salinity  
3.2.3.1 CDEC Data  

The salinity data (in terms of electrical conductivity, EC, and reported in units of µS/cm) 
used in the training were obtained from CDEC, IEP, and STORET for the period of 
1964-2012, at a number of stations, which were then cleaned and filled. The data 
cleaning was done based on the expected relationships between EC and flow at different 
locations, and expected correlations between the adjacent stations. These expected 
functions were used to identify potential data errors in the dataset that were outside a 
certain range of the expected functions (e.g., two standard errors). The data cleaning 
procedures are described in Roy et al. (2014). The data filling was done using linear 
interpolation for data gaps less than 8 days. For data gaps that are more than 8 days, 
correlations with nearby stations were used to fill the gaps.  

3.2.3.2 US Geological Survey (USGS) Data  
The data obtained from the USGS for stations in the Bay were for salinity in practical 
salinity units (psu). To be consistent with the EC data in µS/cm, the salinity data from 
USGS were converted to EC using the approach outlined by Schemel (2001).  

𝑋25,𝑆 = � 𝑆
35
� × (53087) + 𝑆(𝑆 − 35) × [𝐽1 + �𝐽2 × 𝑆

1
2� + (𝐽3 × 𝑆) + �𝐽4 × 𝑆

3
2�]  

 Eq. 3.1 

Where, 

X25,S = EC at 25 0C, J1= -16.072, J2 = 4.1495, J3 = -0.5345, J4 = 0.0261. 

Similar to the CDEC data, correlations between adjacent stations were used to fill larger 
data gaps (> 8 days). The salinity data obtained from the USGS for stations in the Bay 
included Point San Pablo (PSP) at near-surface and Carquinez (CAR) at mid-depth. The 
CAR station did not have measurements at near-surface depths. Previous studies have 
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shown that no single and straight-forward relationship exists between bottom and surface 
salinity across multiple Bay stations (List, 1994), therefore a conversion from mid-depth 
and surface salinity (at a different location) was not performed for CAR. The data 
obtained at mid-depth for CAR were used directly in the training. The non-availability of 
surface salinity data at this station may contribute the uncertainty in X2 fits, especially 
during high flow periods when the X2 position is to the west, and when the salinity at 
CAR is used for interpolating X2 position. 

The filling procedures applied here to the cleaned daily salinity data resulted in a 
continuous block of salinity data from 1964-2012 for the Western Delta stations, and 
from September 1990 to September 2008 for the Bay stations.  

3.2.3.3 Bulletin 23 Data  
Compilation of the 1921-1971 salinity data (referred to as Bulletin 23 data) is described 
in detail in Roy et al. (2014). The salinity data in these reports are grab samples collected 
at fixed locations typically every 4 days, one and one-half hours following higher high 
tide, which corresponds to the highest salinity for the day. There were exceptions in that 
on some dates data were not collected or not sampled at the higher high tide.  

The development of the Bulletin 23 database included the following steps: converting 
observed data to a common salinity unit, accounting for tidal effects on grab samples, 
converting values to represent a daily average salinity, cleaning data, and filling data 
gaps. Once the Bulletin 23 data had been converted to daily average EC, a more 
sophisticated cleaning exercise was performed by comparing daily average EC values at 
pairs of stations. The data filling was conducted based on the salinity data of nearby 
stations. The same regression relationships between pairs of stations that were used for 
data cleaning in the previous section were repeated on the cleaned dataset. After the 
“neighbor station filling” was completed, any remaining short gaps (up to 8 days, 
inclusive) in each station’s salinity record were linearly interpolated.  

3.2.4 DSG Model Fitting  
Fitting for the DSG model was conducted in Matlab using Equation 1 above. Three 
parameters were fitted on a daily basis based on the salinity data available for that day. 
These three parameters include: downstream salinity (So), upstream salinity (Sb), and a 
fitting parameter (Φ2) for the shape of salinity as a function of distance. Numbers of 
salinity data stations available each day vary from 5-26 for the Sacramento River model 
and 5-30 for the San Joaquin River model. The salinity dataset used in the DSG model 
fitting include both the Bulletin 23 and the CDEC dataset. The three parameters were 
fitted using a range of 0-50,000 µS/cm for So, 0 – 2,640 µS/cm for Sb, and 0-20 for -1/Φ2 
(for the training a new variable was defined that equated to -1/ Φ2). The fitted daily 
parameters were used as model inputs in the ANN training for the DSG-based approach.  
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Table 3-1 
Candidate ANN Model Structures Evaluated in Chen and Roy (2013)  

Number Flow Tides 

Antecedent 
salinity 

Data as Input 
Time 
Delay 

1 Net Delta Outflow  Astronomical tide, residuals with 
actual tide No 30 

2 Rio Vista Flow 
(QRio),Qwest Flow 

Astronomical tide, residuals with 
actual tide No 30 

3 
Rio Vista Flow, 
residual of Qwest 
and QRio  

Astronomical tide, residuals with 
actual tide No 30 

4 
Rio Vista Flow, 
residual of Qwest 
and QRio  

Three tidal terms (tidal range at 
Golden Gate and Martinez, and 
half tide at Mallard Island)  

No 30 

5 
Rio Vista Flow, 
residual of Qwest 
and QRio  

Two tidal terms (tidal range at 
Golden Gate and Martinez) No 30 

6 
Rio Vista Flow, 
residual of Qwest 
and QRio  

One tidal term (tidal range at 
Golden Gate) No 30 

7 
Rio Vista Flow, 
residual of Qwest 
and QRio  

No tidal term  No 30 

8 
Rio Vista Flow, 
residual of Qwest 
and QRio  

Actual tide (MSL at Golden Gate)  No 30 

9 
Rio Vista Flow, 
residual of Qwest 
and QRio  

Astronomical tide, residuals with 
actual tide Yes 30 

10 
Rio Vista Flow, 
residual of Qwest 
and QRio  

Astronomical tide, residuals with 
actual tide NARX 30 
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Figure 3-1 Correlation between residuals (difference between actual tide and astronomical 

tide) and atmospheric pressure at Golden Gate (Data source: NOAA). 
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4. RESULTS  
This chapter presents the results of the ANN training for the two approaches presented in 
Chapter 3. In this chapter, the ANN models are compared to existing predictive models of 
salinity in the Delta (the DSG model with constant parameters and the K-M model). This 
chapter also explores ANN model sensitivity to changes in flow, sea level, and air 
pressure. Model diagnostics are presented in a framework similar to that used for 
evaluating models versus interpolated X2 data in Roy et al. (2014).  

4.1 ANN NETWORK TRAINING RESULTS  
4.1.1 Training Using Approach 1 

ANN models were developed using the daily values for flow, astronomical tidal level and 
the residual between astronomical tide and actual tide, and with salinity data from a 
number of stations that have the most continuous data, for WY 1975-2012 (October 1974 
to June 2012, all CDEC stations). The available data points by station are shown in Table 
4-1. This approach resulted in a large number of daily salinity points for training (both 
observed and filled): 109,000 points for the Sacramento River and 151,000 points for the 
San Joaquin River. The cleaned and filled data for this analysis were obtained from Roy 
et al. (2014) as noted in Chapter 3. The stations identified are the primary sources of 
CDEC data. One station, Chipps Island, for which data were available for a limited time 
period (1976-1992) was not used directly, but was used to fill and provide a more 
complete record at a nearby station (Mallard Island). 

The statistics associated with the training results are shown in Table 4-2. Results 
suggested a typical R2 > 0.95 for the Sacramento River model with the exception of 
Emmaton (EMM) (0.85) and Rio Vista (RVB) (0.58). For the San Joaquin River model, 
the fit as R2 was generally >0.92 with the exception of Blind Point (BLP) (0.87), Jersey 
Point (JER) (0.82), Three Mile Slough (TSL) (0.80) and San Andreas Landing 
(SAL)(0.3). Fits between the ANN and observed data are shown at the station level as 
scatterplots in Figure 4-1 and as time series plots in Appendix A. Fits were generally 
better for stations along the Sacramento River branch, for stations that exhibited a wide 
range of salinity. Thus, consistent with Table 4-2, the eastern stations with low salinity 
are not well fit by the overall model. This is addressed through the development of 
station-specific ANNs described in Chapter 4.6. 

Results for the nudging are shown in Table 4-3 and Table 4-4. The nudging suggests a 
change in distance of -3 to +3 km will result slightly improved fits at some stations. 
However, the improved fits are marginally better than using the original distances, and 
stations with poor fits remained hard to fit. In some cases nudging by a larger amount (by 
more than 3 km) could have changed results, but there was no physical basis to modify 
the distance by such a large amount. Although the analysis provides some insights how 
much improvement can be achieved by modifying the distance, the changes were not 
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large enough to formally adopt these new “nudged” distances. These results are not used 
in the subsequent analysis.  

4.1.2 Training using Approach 2 (DSG-based Approach) 
The results of fitting a daily DSG model are daily values of three parameters (So, Sb, and 
-1/ɸ2) used in the DSG model. These values are used as outputs for the ANN model 
training. ANN models were developed using the daily flow, mean sea level and tidal 
range as inputs described above and the fitted parameters, for both the Bulletin 23 (WY 
1922-1971) and the CDEC (WY 1965-2012) data. Available data for this approach are 
identified in Table 4-5.  

Results for the training are a model that predicts these three parameters based on two 
flows (Qwest and Rio Vista flow), astronomical tide and tidal residual. Results of the 
Sacramento River ANN predictions for these values are shown in Figure 4-2 and Figure 
4-3 as scatterplots and time series plots. There is no simple relationship between the three 
DSG model input variables, although for some, it appears that the 1922-1967 period 
ranges are distinct from the 1968-2012 values. The So and Sb values are related to the 
inflows, with lower values for both at higher inflows. 

The ANN-derived parameters were then used to predict salinity at different locations 
based on the equation from the DSG model. The values of the results for the DSG fitted 
ANN model compared to the observed values are shown in Table 4-6.  

Results suggested a general fit of R2 near or above 0.9 for the Sacramento River model 
with the exception of a few stations (PTD, PTO, PSP, and RVB). The CDEC stations 
have better fits that the Bulletin 23 stations. For the San Joaquin River model, the fit is 
generally above 0.9 with the exception of a few stations (OPT, PTO, SAL). The 
comparison of the model-trained and observed salinity (for the Bulletin 23 and CDEC 
time periods) as scatter plots are shown Figure 4-4, and as time series plots in Appendix 
B.  

4.2 EVALUATION OF ANN MODEL PERFORMANCE WITH RESPECT TO X2 
Additional performance evaluation is presented for ANNs developed using Approach 1 
and 2 using a sequence of plots that include scatterplots of observed/interpolated values 
and ANN-calculated values and residuals as a function of target variable value and over 
time. For context, the range of interpolated X2 values over the period of interest (WY 
1922-2012) is shown as a function of month in Table 4-7. Typically, between 84% and 
99% of the interpolated daily X2 values fall between 50 and 100 km. This is important to 
consider when any of the subsequent scatterplots are viewed; although the values that lie 
outside this range are of interest, the vast majority of points fall in the middle range and 
are less visually apparent because they overlap each other.  

In Figure 4-5 through Figure 4-7 we show various comparisons of the ANN model and 
interpolated X2 (Approach 1). Figure 4-5 shows scatter plots of X2 conditioned on river 
and month on the scale of the X2 positions. The quality of these fits is assessed in Table 
4-8. There is an overall R2 of 0.92, ranging from 0.79 to 0.96 depending on the month 
and river. Second, plots of the residuals (interpolated X2 subtracted from model X2) 
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against interpolated X2 show the agreement between modeled and interpolated values for 
various salinity conditions (Figure 4-6). Typically, the values with high residuals fall in 
the <50 Km range of interpolated X2. The weakness of the ANN model in capturing 
these low values of X2 (during high flow months) may be related to the nature of the data 
in the bay (i.e., the availability only of mid-depth salinity at Carquinez Strait) and 
potentially changes in the stratification that occur during high flow periods and affect 
surface salinity values. Besides the excursions at low X2 values, there does not appear to 
be any pattern in the residuals over the remaining data range. The residuals are shown as 
a function of time in Figure 4-7. Although the presence of a large number of data points 
results in there being significant non-zero fits to the residual, for the most part, there does 
not appear to be a practically meaningful temporal trend in the residuals. In addition, we 
show the monthly averaged X2 (both ANN and observed) in Figure 4-8 and Table 4-9. 
Fits are considerably improved following monthly averaging, with R2 values ranging 
from 0.91 to 0.99, and standard error of 2.2 km and 2.5 km for the Sacramento and San 
Joaquin River branches. 

Using a similar set of plots, we show the performance of the ANNs developed using 
Approach 2 for WY 1922-2012 (Figure 4-9 through Figure 4-11). In these plots, the data 
for the 1922-1967 is shown with a different color; this was done to highlight some events 
with very high X2 (i.e., salt water intrusion into the Delta) that occurred prior to the 
completion of the State Water Project. Figure 4-9 shows scatter plots of X2 conditioned 
on river and month on the scale of the X2 positions. The quality of these fits is assessed 
in Table 4-10. There is an overall R2 of 0.94, i.e., slightly better than Approach 1, ranging 
from 0.82 to 0.96 depending on the month and river. Second, plots of the residuals 
against interpolated X2 show the agreement between modeled and interpolated values for 
various salinity conditions (Figure 4-10). Typically, the values with high residuals fall in 
the <50 Km or >100 km range of interpolated X2. The inclusion of data prior to 1944 in 
the analysis also brings in periods with very high X2 values that are often not captured 
through the ANN. Because each point represents a single day, many of the outlier points 
on the east (high X2) actually correspond to a single period in the 1930s where the X2 
position was much further east than has typically been the case in subsequent years. 
Importantly, this is not the case for the high X2 residuals when X2<50 km. In this case, 
there are points that belong to both the pre- and post-project periods. The weakness of the 
ANN model in representing low values of X2, as in Approach 1, also remains in this 
version of the ANN. Other characteristics of the residuals (over time) are similar to those 
noted for Approach 1 (Figure 4-11). Over this time there is no systematic pattern in the 
residuals although there are instances of high values in the dry months of the pre-project 
period. Of the 24 river-month combinations possible, only 3 show the presence of a slope 
that is different from zero, and even in these cases the magnitude of the slope is small. As 
with Approach 1, we show the monthly averaged X2 (both ANN and observed) in Figure 
4-12 and Table 4-11. Fits are improved following monthly averaging, although not as 
good as for the monthly averaging for Approach 1.  

Taken together, both ANN modeling approaches appear to represent the X2 isohaline 
reasonably well for all but the most extreme conditions over a large period of record. 
Their utility for future applications depends on the relative performance of other available 
models, which are discussed below. 
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4.3 EVALUATION OF DAILY DSG MODEL PERFORMANCE 
The daily DSG model is evaluated using a set of plots and tables that are consistent with 
the approach used for the ANN model above. This approach assumes constant values of 
S0, Sb, and Ф2 

2
. Figure 4-13 shows scatter plots of X2 conditioned on river and month 

on the scale of the X2 positions. The quality of these fits is assessed in Table 4-12. There 
is an overall R2 of 0.92, ranging from 0.83 to 0.95 depending on the month and river. 
Plots of residuals (interpolated X2 subtracted from model X2) against interpolated X2 
show agreement between modeled and interpolated values for various salinity conditions 
(Figure 4-14). Similar to the ANN model, values with high residuals fall in the >100 km 
or the <50 Km range of interpolated X2. Visually, the performance of the two models is 
similar and the numeric values of the fit statistics in Table 4-12 are needed for more 
direct comparison (such as the fit for individual months). 

4.4 EVALUATION OF DAILY K-M MODEL PERFORMANCE 
The K-M equation has also been developed in daily form (Kimmerer and Monismith, 
1992): 

Daily X2(t) = 10.16 + 0.945*X2(t-1) – 1.487*log10(Qout (t))  Eq. 4.1 

This equation was used for comparison with the other methods discussed above (ANN 
and daily DSG model). The X2 value was not calculated for days when the Net Delta 
Outflow (Qout) was negative, which occurred at various times in the early part of the 
record. The scatterplots of the modeled and interpolated X2, by month and river, are 
shown in Figure 4-16, and the fit statistics are shown in Table 4-13. The R2 of the overall 
fit is 0.89, somewhat lower than for the ANN and the daily DSG model, and ranges from 
0.76 to 0.93. The scatterplots show considerably greater noise in the fit, consistent with 
these numbers.  

Given the generally superior fits of the ANN model and the daily DSG model, additional 
statistics on the daily K-M model are not shown here. 

4.5 DETAILED EXAMINATION OF PERIODS WITH HIGH RESIDUALS 
To gain a better understanding of the differences between interpolated and ANN-
calculated X2 (Approach 2), selected periods with large residuals were examined more 
closely. We noticed that many of the days with large disagreement between interpolated 
and modeled X2 occurred closely spaced in time. Therefore we placed all days where the 
magnitude of the residual was larger than fifteen kilometers into groups separated by less 
than thirty days. Plots of several variables during a time window surrounding these 
groups (starting one year before the beginning of the group and ending thirty days after 
the end of the group) were developed. All instances of large residuals occurred near 
either the western or eastern extreme of the range of X2 positions.  

An example showing one of the most significant departures between the model and 
interpolated value is shown in Figure 4-17. The first plot (upper panel) shows daily 

2 ϕ1 = 441 (Sacramento River) , ϕ1 = 483 (San Joaquin River), ϕ2 = -0.189 (Sacramento River), ϕ2 = -0.198 (San 
Joaquin River); Sb = 200 uS/cm, So = 350 uS/cm/km * X2 
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outflow. The second plot (middle panel) shows the daily X2 series for the interpolated 
values and for the values modeled by the DSG model or the Approach 2 ANN. The last 
plot (lower panels), shows the same isohaline positions superimposed on the salinity field 
given by the filled and cleaned salinity data. The extent of the grouping of high residual 
days is indicated by the shaded region. All exceedances greater than 15 km are shown in 
Appendix C. The example here displays limitations of the approach and the overall 
challenge of describing the early 1930’s period with relatively limited data. 

4.6 ANNS FOR SPECIFIC STATIONS 
Some stations of significance for compliance, notably Emmaton and Jersey Point, are not 
as well described by focusing on the entire salinity gradient rather than individual 
stations. Thus, fits to EC at these specific stations are poorer than at other stations, or the 
X2 isohaline.  

To address these issues, we developed targeted ANNs using the same inputs (except for 
distance from Golden Gate) and focused on the CDEC period, similar to Approach 1. 
Additional evaluation supported the use of a longer lag time in these ANNs, and a 60-day 
time lag was used. The station-specific approach generally resulted in substantially 
improved fits: The R2 values for Jersey Point and Emmaton were both 0.92 (Table 4-14 
and Table 4-15). These single-station ANNs are therefore recommended for the eastern 
locations. Additional diagnostics on the fit, by data source are shown for the two stations 
in Figure 4-18 through Figure 4-24. In general, the data span 2 orders of magnitude (<100 
to >1,000 µS/cm), and the relative fits are poorer at the very low end of the range (i.e, as 
a percent of the target value. When the residuals are compared as a function of target EC 
(Figure 4-19 and Figure 4-23), the higher EC values correspond to larger errors. 
Compared over time, the residuals indicate a periodicity in some months, likely 
corresponding to the type of water year, but do not show a continuous time trend (Figure 
4-20 and Figure 4-24).  

4.7 SENSITIVITY TO RIO VISTA FLOW AND SEA LEVEL RISE 
The trained station-based ANN models (Sacramento River Model, Approach 1 ANN) 
were used to project sensitivity of EC over distance under different flow conditions from 
Rio Vista: 5,000, 10,000, and 25,000 cfs. For the sensitivity analysis, the inputs for the 
ANN models are: distance, Rio Vista flow, Qwest flow, astronomical tide, and the 
residuals between the actual and astronomical tide. The model was run in steady state 
where the flow inputs were held constant at different values. The Qwest flow was 
specified as a function of Rio Vista flow (Qwest = 0.2666*QRio - 834.64, based on data 
from WY 1975-2012), and allowing a variation of +2,000 cfs about this value. The values 
for distance used were specified at 10 km intervals. The astronomical tide and tide 
residuals used were averages of the most recent 10 years (2002-2012, calendar years). 
The results represent sensitivity of EC over distance to changes in flow conditions for a 
set condition of average tidal conditions. Simulated EC as a function of distance 
decreases from Golden Gate, with lower EC under higher flows (Figure 4-26). Following 
the presentation in Jassby et al. (1995), simulated EC values were plotted as a function of 
standardized distance (X/X2). The approach results in different curves of “self-similarity” 
as Rio Vista flow increases (e.g., 25,000 cfs; Figure 4-27). Although not shown in this 
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form, previous results have shown the changing of the horizontal salinity structure at 
higher Delta outflows (Monismith et al., 2002). 

Sea level at Golden Gate Bridge has increased at a rate of 0.08 inches per year over the 
past century (Fleenor et al., 2008). In the coming decades, the rate of sea level rise at 
Golden Gate is projected to further increase. The CALFED independent science board 
(ISB) has recommended the Delta Vision effort use a mid-range of sea level rise of 8–16 
inches by 2050 and 28–39 inches by 2100. The trained ANN models (using Approach 1) 
were used to test sensitivity of changes in EC due to sea level rise of 6 inches (0.5 foot) 
and 12 inches (1 foot; Figure 4-28). As noted in Chapter 1, data-driven tools such as 
ANNs are best applied within the envelope of the training data. In this regard, an increase 
of 1 foot is within the training range of sea level used, although higher values may not 
result in reliable extrapolations. The results show some mixed changes in high salinity 
zones near Golden Gate, and a complex relationship with distance, but for most distances 
showed increases in EC due to sea level rise.  

4.8 SENSITIVITY TO AIR PRESSURE AND QWEST FLOW 
The difference between actual tide and the astronomical tide to a large degree is 
explained by the air pressure. The air pressure can affect mean sea level. A sensitivity of 
predicted salinity to air pressure using the trained station based ANN models (Approach 
1) was performed to evaluate effects of this variable for different values of Rio Vista 
flow. The sensitivity was performed at a range of air pressure at 1,000 mbar, 1,015 mbar, 
and 1,030 mbar, bounding the observed air pressure values. The results show a small 
sensitivity to air pressure, with a slightly greater effect at lower flows, with higher 
salinity occurring at the same distance for lower pressure (with increased tidal range; 
Figure 4-29). Changes, when computed from a baseline of 1,015 mbar, show an 
approximate mirror image relationship with distance. Salinities are higher for the higher 
pressure case over most of the gradient. 

A sensitivity analysis was also conducted to evaluate effects of Qwest flow on salinity, 
again using the Approach 1 ANN. Qwest flow reflects diversions from Delta and is a 
function of Rio Vista flow. A sensitivity of salinity to Qwest flow was performed to 
evaluate the effects of this variable. The sensitivity was performed at a range of Qwest 
flow at mean levels predicted from the Qwest and Rio Vista flow relationship, and a 
range of ± 2,000 cfs. The results show a relatively large sensitivity to Qwest flow, 
particularly under low flow conditions (Figure 4-30). Similar to the relationship with 
pressure, changes from the mean Qwest (i.e., based on the correlation between Qwest and 
Rio Vista flow) show an approximate mirror image relationship with distance. Salinities 
are higher when Qwest is lower, indicative of lower overall freshwater flow into the bay. 
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Table 4-1 
Available Data for Training (Approach 1) 

Station Name  Code  Distance  Time Period Data Count  

Sacramento River  

Point San Pablo PSP  22 1974-2012 13355 

Carquinez CAR  45.5 1974-2012 13490 

Martinez (USBR) MBR 55 1974-2012 7847 

Martinez MRZ  54 1974-2012 5926 

Port Chicago PCT  64 1974-2012 13773 

Mallard Island MAL  75 1974-2012 13773 

Collinsville CLL  81 1974-2012 13773 

Emmaton EMM 92 1974-2012 13762 

Rio Vista Bridge RVB  101 1974-2012 13762 

San Joaquin River  

Point San Pablo  PSP  22 1974-2012 13355 

Carquinez  CAR  45.5 1974-2012 13490 

Martinez (USBR) MBR 55 1974-2012 7847 

Martinez  MRZ  54 1974-2012 5926 

Port Chicago  PCT  64 1974-2012 13773 

Mallard Island  MAL 75 1974-2012 13773 

Pittsburg  PTS 77 1974-2012 13744 

Antioch  ANH 85.75 1974-2012 13773 

Blind Point  BLP 92.85 1974-2012 13752 

Jersey Point  JER  95.75 1974-2012 13736 

Three Mile Slough @ SJR TSL  100.4 1974-2012 13689 

San Andreas Landing SAL 109.2 1974-2012 13740 
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Table 4-2 
Performance of Trained Salinity ANN Model (Approach 1)  
ANN Salinity (µS/cm) = C1 + C2*Observed Salinity (µS/cm) 

Station 

Daily Monthly 

C2 C1 R2 SE(µS/cm) C2 C1 R2 SE(µS/cm) 

Sacramento River 

PSP 0.9331 2453.8 0.9556 2232.6 0.9942 82.5 0.9741 1686.2 

CAR 0.9526 1153.0 0.9565 2382.9 0.9902 129.0 0.9781 1789.4 

MRZ 0.9079 1706.7 0.9786 1760.4 0.9342 1273.1 0.9927 911.1 

MBr 0.8936 1714.7 0.9557 2707.0 0.9102 1427.1 0.9674 2101.3 

PCT 0.9049 1044.6 0.9583 2099.3 0.9318 760.5 0.9749 1480.7 

MAL 0.8877 427.5 0.9556 1427.9 0.9002 358.8 0.9744 960.5 

CLL 0.9027 332.7 0.9353 1129.3 0.9242 268.1 0.9601 814.3 

EMM 1.0341 -28.0 0.8528 573.7 1.0816 -68.8 0.9239 462.4 

RVB 2.8000 -374.4 0.5755 134.7 2.9650 -414.7 0.7184 445.9 

San Joaquin River  

PSP  0.894 4044 0.945 2481.1 0.963 1332 0.965 1905.5 

CAR  1.007 -875 0.956 2584.8 1.061 -2414 0.974 2107.4 

MRZ  0.920 2276 0.973 1960.1 0.952 1755 0.990 1072.9 

MBR 0.907 2285 0.952 2821.2 0.925 1972 0.965 2217.7 

PCT  0.825 1822 0.954 2197.2 0.852 1540 0.972 1432.5 

MAL  0.794 794 0.955 1440.3 0.809 712 0.972 904.0 

PTS  0.799 766 0.940 1464.4 0.822 657 0.960 973.8 

ANH 1.019 186 0.929 752.8 1.040 146 0.953 645.1 

BLP  1.182 -65 0.868 506.2 1.206 -91 0.912 527.4 

JER  1.330 -145 0.820 401.2 1.360 -168 0.883 484.6 

TSL  1.279 -215 0.795 295.7 1.302 -230 0.889 314.2 

SAL  1.459 -234 0.274 98.3 1.580 -260 0.370 380.0 

 

 Modeling Salinity in Suisun Bay and the Western Delta Using Artificial Neural Networks 
4-8 April 2014 



Tetra Tech, Inc. Results 
 

Table 4-3 
Nudging results for distance at CDEC stations  

Sacramento River 

Station Distance (km) Distance change (km) Best distance (km) 

PSP 22 0.3 22.3 

CAR 45.5 0.8 46.3 

MRZ 54 -0.7 53.3 

MBR 55 -0.6 54.4 

PCT 64 -0.4 63.6 

MAL 75 0 75 

CLL 81 0 81 

EMM 92 0 92 

RVB 101 -3 98 

San Joaquin River 

Station Distance (km) Distance change (km) Best distance (km) 

PSP 22 3 25 

CAR 45.5 2.4 47.9 

MRZ 54 0.7 54.7 

MBR 55 1 56 

PCT 64 0.5 64.5 

MAL 75 3 78 

PTS 77 2.3 79.3 

ANH 85.75 -0.4 85.35 

BLP 92.85 -3 89.85 

JER 95.75 -3 92.75 

TSL 100.4 -3 97.4 

SAL 109.2 -3 106.2 
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Table 4-4  
Performance of Trained Salinity ANN Model (Approach 1) after Nudging of Distance 

ANN Salinity (µS/cm) = C1 + C2*Observed Salinity (µS/cm) 

Station 

Daily Monthly 

C2 C1 R2 SE C2 C1 R2 SE 

Sacramento River 

PSP  0.9461 2222.5 0.953 2246.4 1.002 42.1 0.970 1799 

CAR 0.9636 13.4 0.958 2502.1 1.004 -1107.2 0.973 1924 

MRZ  0.8942 2786.7 0.976 1697.3 0.923 2306.7 0.991 993 

MBR 0.8914 2335.6 0.956 2447.4 0.912 2000.1 0.968 2024 

PCT  0.8727 1385.4 0.957 1896.0 0.900 1098.2 0.974 1438 

MAL  0.858 593.4 0.959 1195.9 0.870 519.5 0.974 915.9 

CLL 0.890 610.9 0.937 1036.3 0.917 498.1 0.959 801.2 

EMM 0.969 353.9 0.877 603.4 1.049 239.4 0.915 454.5 

RVB 2.077 204.4 0.722 443.1 2.252 120.6 0.737 332 

San Joaquin River 

PSP  0.9688 677.3 0.941 2618.5 1.041 -2086.9 0.963 2106.8 

CAR  0.9314 -834.2 0.957 2465.3 0.971 -1918.6 0.974 1902.2 

MRZ  0.8771 1679.5 0.975 1715.9 0.905 1227.5 0.990 1011.6 

MBR 0.8701 1193.8 0.953 2471.9 0.890 869.1 0.966 2047.2 

PCT  0.8480 1353.3 0.950 1972.9 0.877 1056.5 0.970 1500.0 

MAL  0.6632 602.7 0.951 1016.1 0.679 502.1 0.971 743.5 

PTS  0.6765 702.0 0.932 1095.3 0.704 550.2 0.958 826.8 

ANH 0.9206 456.8 0.915 812.9 0.966 324.1 0.946 615.4 

BLP  1.2499 270.9 0.871 722.3 1.328 133.6 0.913 550.7 

JER  1.4175 174.6 0.845 641.3 1.525 46.6 0.891 477.9 

TSL  1.4698 106.0 0.831 490.5 1.569 2.7 0.889 357.6 

SAL  3.0970 -149.4 0.637 401.9 3.500 -302.9 0.737 292.0 
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Table 4-5 
Available Data for ANN Model (Approach 2) 

Station Name  Code  Distance  Time Periods Data Count  

Sacramento River  

Point Orient PTO 19.8 Bulletin 23 12637 

Point Davis PTD 40.6 Bulletin 23 13327 

Crocket CRK 44.6 Bulletin 23 12521 

Benicia BEN 52.3 Bulletin 23 12567 

Martinez MRZ 52.6 Bulletin 23 12621 

Bulls Head Point BHP 54.7 Bulletin 23 7680 

West Suisun WSN 59.5 Bulletin 23 12032 

Bay Point BPT 64.2 Bulletin 23 9100 

Port Chicago PCT 66 Bulletin 23 12429 

O. and A. Ferry OAF 74.8 Bulletin 23 13370 

Collinsville CLL 81.8 Bulletin 23 13609 

Emmaton EMM 92.9 Bulletin 23 13104 

Threemile Slough Bridge TSB 96.6 Bulletin 23 13097 

Rio Vista Bridge RVB 102.2 Bulletin 23 13229 

Isleton Bridge ITB 110.6 Bulletin 23 7491 

Point San Pablo PSP 22 CDEC 16839 

Carquinez CAR 45.5 CDEC 17010 

Martinez MRZ 54 CDEC 6033 

Port Chicago PCT 64 CDEC 17389 

Mallard MAL 75 CDEC 17505 

Collinsville CLL 81 CDEC 16985 

Emmaton EMM 92 CDEC 17420 

Rio Vista Bridge RVB 101 CDEC 17420 
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Table 4-5 (continued) 
Available Data for ANN Model (Approach 2) 

Station Name  Code  Distance  Time Periods Data Count  

San Joaquin River  

Point Orient PTO 19.8 Bulletin 23 12637 

Point Davis PTD 40.6 Bulletin 23 13327 

Crocket CRK 44.6 Bulletin 23 12521 

Benicia BEN 52.3 Bulletin 23 12567 

Martinez MRZ 52.6 Bulletin 23 12621 

Bulls Head Point BHP 54.7 Bulletin 23 7681 

West Suisun WSN 59.5 Bulletin 23 12032 

Bay Point BPT 64.2 Bulletin 23 9100 

Port Chicago PCT 66 Bulletin 23 12429 

O. and A. Ferry OAF 74.8 Bulletin 23 13370 

Antioch ANH 88.4 Bulletin 23 13315 

Antioch Bridge ANB 93.7 Bulletin 23 12904 

Jersey Point JER 98.8 Bulletin 23 13272 

False River FRV 101.2 Bulletin 23 12171 

Oulton Point OPT 108.1 Bulletin 23 5395 

San Andreas Landing SAL 113.1 Bulletin 23 5395 

Webb Pump WBP 115.9 Bulletin 23 3659 

Point San Pablo PSP 22 CDEC 16839 

Carquinez CAR 45.5 CDEC 17010 

Martinez MRZ 54 CDEC 6033 

Port Chicago PCT 64 CDEC 17389 

Mallard Island MAL 75 CDEC 17505 

Antioch ANH 85.75 CDEC 17561 

Blind Point BLP 92.85 CDEC 17540 

Jersey Point JER 95.75 CDEC 17388 

Threemile Slough Bridge TSL 100.4 CDEC 17526 

San Andreas Landing SAL 109.2 CDEC 17405 
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Table 4-6 
Performance of Trained Salinity ANN Model (Approach 2)  
ANN Salinity (µS/cm) = C1 + C2*Observed Salinity (µS/cm) 

Station Source 

Daily Monthly 

C2 C1 R2 SE C2 C1 R2 SE 

Sacramento River  

PTO Bulletin 23 0.946 6604.1 0.5638 3636.6 0.998 5804.6 0.6582 2990.6 

PTD Bulletin 23 0.941 3210.6 0.8587 2835.3 0.947 3117 0.898 2293.8 

CRK Bulletin 23 1.04 860.9 0.8925 2689 1.031 1033.1 0.9198 2205.1 

BEN Bulletin 23 1.068 2165.9 0.915 2551.4 1.067 2172.8 0.9459 1960.8 

MRZ Bulletin 23 1.097 2786.6 0.9071 2670.8 1.104 2719.5 0.9419 2033 

BHP Bulletin 23 0.938 1099 0.9413 2149 0.939 1116.1 0.9664 1544.7 

WSN Bulletin 23 0.981 1634 0.9152 2282.1 1.004 995.7 0.9144 2282.6 

BPT Bulletin 23 0.923 787.9 0.9437 1811.1 0.949 217.6 0.9326 1935.3 

PCT Bulletin 23 0.905 -646.5 0.9505 1518.1 0.926 -1070.3 0.9524 1488.7 

OAF Bulletin 23 0.834 297.1 0.9689 914.5 0.832 275.6 0.9752 800.8 

CLL Bulletin 23 0.755 269.7 0.9711 607 0.756 256.2 0.981 492.4 

EMM Bulletin 23 0.645 160.6 0.9382 420.2 0.658 152.7 0.9661 323.6 

TSB Bulletin 23 0.684 196.8 0.9066 385.2 0.711 180.4 0.9505 298.4 

RVB Bulletin 23 0.723 201.9 0.8646 289.4 0.73 194.1 0.9126 260.7 

ITB Bulletin 23 0.789 158.5 0.8932 142 0.634 194.7 0.9162 157.5 

PSP CDEC 0.809 3631.2 0.6865 4086.3 0.833 2348.2 0.736 3655.7 

CAR CDEC 1.058 -2176 0.9001 3068.6 1.075 -2740.5 0.9221 2665.5 

MRZ CDEC 1.167 -175.2 0.9608 1974.3 1.21 -627.2 0.9894 1012.5 

PCT CDEC 1.106 143.9 0.9382 2021.5 1.128 -192.7 0.9655 1478.8 

MAL CDEC 0.98 9.7 0.9694 816.5 0.993 -15.9 0.9823 612.1 

CLL CDEC 0.932 188.5 0.9653 546.7 0.955 156.5 0.9742 466.2 

EMM CDEC 0.826 231.9 0.9817 116.4 0.833 212.2 0.9928 72.4 

RVB CDEC 1.155 198.2 0.653 127.3 1.198 179.1 0.7457 107 
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Table 4-6 (continued) 
Performance of Trained Salinity ANN Model (Approach 2)  
ANN Salinity (µS/cm) = C1 + C2*Observed Salinity (µS/cm) 

Station Source 

Daily Monthly 

C2 C1 R2 SE C2 C1 R2 SE 

San Joaquin River 

PTO Bulletin 23 1.045 4368.5 0.550 4030.7 1.097 3581.3 0.794 2463.5 

PTD Bulletin 23 0.917 3276.4 0.831 3009.6 0.924 3152.1 0.935 2503.7 

CRK Bulletin 23 1.002 1075.9 0.874 2787.6 0.993 1247.5 0.950 2219.2 

BEN Bulletin 23 1.032 2131.4 0.912 2448.6 1.028 2182.2 0.973 1741.5 

MRZ Bulletin 23 1.060 2738.8 0.903 2574.4 1.063 2713.9 0.971 1746.9 

BHP Bulletin 23 0.920 956.2 0.939 2040.8 0.914 1009.8 0.983 1559.0 

WSN Bulletin 23 0.955 1521.9 0.921 2096.8 0.972 966.6 0.958 2104.3 

BPT Bulletin 23 0.945 487.0 0.947 1636.8 0.965 -66.0 0.968 1790.1 

PCT Bulletin 23 0.900 -693.0 0.950 1460.2 0.916 -1067.2 0.975 1544.3 

OAF Bulletin 23 0.930 218.1 0.968 872.3 0.918 221.4 0.985 904.0 

ANH Bulletin 23 0.890 65.5 0.919 704.0 0.854 87.2 0.963 786.0 

ANB Bulletin 23 1.081 40.6 0.840 439.1 1.226 -27.2 0.896 445.5 

JER Bulletin 23 1.231 -16.5 0.867 516.1 1.120 31.4 0.922 485.0 

FRV Bulletin 23 0.536 216.1 0.753 93.1 0.867 133.5 0.577 280.8 

OPT Bulletin 23 0.528 210.5 0.636 82.4 0.501 220.5 0.823 121.4 

SAL Bulletin 23 0.691 196.4 0.352 72.5 0.706 196.2 0.666 57.7 

WBP Bulletin 23 0.976 -83.5 0.756 520.6 0.720 40.3 0.848 574.2 

PSP CDEC 0.921 542.9 0.717 4317.4 0.956 -815.0 0.875 3467.4 

CAR CDEC 1.023 -1684.4 0.909 2811.5 1.047 -2325.1 0.966 2158.2 

MRZ CDEC 1.104 -61.5 0.964 1795.7 1.119 -293.7 0.993 936.6 

PCT CDEC 1.033 250.0 0.938 1884.2 1.056 21.2 0.981 1309.6 

MAL CDEC 0.943 134.8 0.969 788.6 0.948 100.4 0.992 582.4 

PTS CDEC 0.931 210.7 0.947 906.3 0.944 149.3 0.984 702.9 

ANH  CDEC 0.998 44.2 0.976 300.5 1.000 42.6 0.994 204.9 

BLP CDEC 0.953 35.5 0.962 183.2 0.946 42.9 0.987 146.6 

JER CDEC 0.971 49.5 0.944 156.6 0.961 56.2 0.981 122.5 

TSL CDEC 0.744 124.4 0.916 103.0 0.734 129.6 0.972 103.1 

SAL CDEC 0.716 169.0 0.430 79.8 0.755 161.3 0.738 61.1 
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Table 4-7 
Percentage of Interpolated X2 Values that fall between different distance ranges 

Branch Month 
Percent of X2 West 

of 50km 
Percent of X2 between 

50-100km 
Percent of X2 East of 

100km 

SAC Dec 3.8% 96.2% 0.0% 

SAC Jan 8.9% 91.1% 0.0% 

SAC Feb 15.4% 84.6% 0.0% 

SAC Mar 15.6% 84.4% 0.0% 

SAC Apr 9.2% 90.8% 0.0% 

SAC May 7.0% 93.0% 0.0% 

SAC Jun 3.1% 96.9% 0.0% 

SAC Jul 0.0% 97.8% 2.2% 

SAC Aug 0.0% 97.2% 2.8% 

SAC Sep 0.0% 95.6% 4.4% 

SAC Oct 0.0% 98.0% 2.0% 

SAC Nov 0.5% 99.2% 0.3% 

SJR Dec 3.9% 95.2% 0.9% 

SJR Jan 8.9% 91.1% 0.0% 

SJR Feb 15.4% 84.6% 0.0% 

SJR Mar 15.6% 84.4% 0.0% 

SJR Apr 9.2% 90.8% 0.0% 

SJR May 7.0% 93.1% 0.0% 

SJR Jun 3.1% 95.9% 0.9% 

SJR Jul 0.0% 97.7% 2.3% 

SJR Aug 0.0% 95.9% 4.1% 

SJR Sep 0.0% 93.7% 6.3% 

SJR Oct 0.0% 98.1% 1.8% 

SJR Nov 0.6% 98.6% 0.8% 
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Table 4-8 
Scatterplot Statistics of ANN Model (Approach 1), Grouped by River and Month  

ANN X2 (km) = C1 + C2*Observed X2 (km) 

Branch Month C2 C1 R2 Standard Error (km) 

All All 0.93 7.6 0.920 3.6 

SAC Jan 0.84 13 0.860 4.9 

SAC Feb 0.83 14 0.850 5.1 

SAC Mar 0.85 12 0.790 5.6 

SAC Apr 0.93 6.9 0.870 3.9 

SAC May 0.95 5.2 0.930 3.1 

SAC Jun 0.97 3.1 0.960 2.1 

SAC Jul 0.94 6.7 0.920 2.5 

SAC Aug 1 1.6 0.880 2.5 

SAC Sep 1 1.3 0.900 2.5 

SAC Oct 0.93 6.7 0.930 2.1 

SAC Nov 0.92 8.2 0.900 2.9 

SAC Dec 0.95 5.1 0.930 3.4 

SAC all 0.92 7.9 0.910 3.6 

SJR Jan 0.89 8.9 0.910 4.3 

SJR Feb 0.88 10 0.880 4.8 

SJR Mar 0.89 11 0.880 4.3 

SJR Apr 0.9 9.8 0.920 2.9 

SJR May 0.93 7.1 0.930 3.2 

SJR Jun 0.91 9.7 0.950 2.4 

SJR Jul 0.89 12 0.920 2.4 

SJR Aug 0.96 5.8 0.890 2.6 

SJR Sep 0.91 9.7 0.920 2.5 

SJR Oct 0.97 5.8 0.940 2.3 

SJR Nov 0.95 6.7 0.880 3.6 

SJR Dec 0.89 9.2 0.920 3.7 

SJR All 0.93 7.6 0.930 3.5 
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Table 4-9 
Scatterplot Statistics of ANN Model (Approach 1) Averaged Monthly, Grouped by River and Month  

ANN Monthly X2 (km) = C1 + C2*Observed Monthly X2 (km) 

Branch Month C2 C1 R2 Standard Error (km) 

All All 0.96 4.9 0.97 2.3 

SAC Jan 0.87 11 0.96 2.2 

SAC Feb 0.85 12 0.96 2.4 

SAC Mar 0.88 10 0.94 2.5 

SAC Apr 0.99 3.4 0.98 1.7 

SAC May 0.99 2.5 0.98 1.7 

SAC Jun 0.99 1.9 0.99 1.1 

SAC Jul 0.96 4.8 0.96 1.7 

SAC Aug 1 -1.7 0.93 1.9 

SAC Sep 1 -1.5 0.95 1.9 

SAC Oct 0.96 4.2 0.97 1.4 

SAC Nov 0.93 7.3 0.93 2.3 

SAC Dec 0.97 3.5 0.98 1.7 

SAC all 0.95 5.8 0.97 2 

SJR Jan 0.99 1 0.96 2.8 

SJR Feb 0.94 5.8 0.93 3.5 

SJR Mar 0.94 7.2 0.96 2.4 

SJR Apr 1 1.9 0.96 2.3 

SJR May 0.97 4.7 0.97 2.1 

SJR Jun 0.92 9.1 0.98 1.6 

SJR Jul 0.92 10 0.96 1.9 

SJR Aug 0.97 4.8 0.92 2.2 

SJR Sep 0.92 9.3 0.95 2 

SJR Oct 0.98 5.5 0.97 1.5 

SJR Nov 0.95 6.8 0.91 2.8 

SJR Dec 0.92 7.2 0.95 2.6 

SJR All 0.97 4.3 0.96 2.6 
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Table 4-10 
Scatterplot Statistics of ANN Model (Approach 2), Grouped by River and Month  

ANN X2 (km) = C1 + C2*Observed X2 (km) 

Branch Month C2 C1 R2 Standard Error (km) 

All All 0.94 4.4 0.94 3.5 

SAC Jan 0.89 7.1 0.92 3.7 

SAC Feb 0.9 6.1 0.9 3.8 

SAC Mar 0.86 8.6 0.88 3.7 

SAC Apr 0.89 6.6 0.9 3.5 

SAC May 0.94 4.2 0.92 3.3 

SAC Jun 0.95 3.5 0.96 2.6 

SAC Jul 0.94 4.8 0.94 2.4 

SAC Aug 0.94 5.1 0.91 2.6 

SAC Sep 0.95 4.2 0.93 2.5 

SAC Oct 0.89 9.1 0.91 2.5 

SAC Nov 0.93 5.8 0.92 2.7 

SAC Dec 0.93 5 0.93 3.1 

SAC All 0.95 3.7 0.95 3.1 

SJR Jan 0.9 6.1 0.9 4.2 

SJR Feb 0.92 5.1 0.9 4 

SJR Mar 0.88 7.6 0.88 3.9 

SJR Apr 0.9 6.1 0.89 3.8 

SJR May 0.93 4.5 0.92 3.4 

SJR Jun 0.95 3.3 0.95 2.8 

SJR Jul 0.95 4.2 0.94 2.7 

SJR Aug 0.93 5.7 0.91 3 

SJR Sep 0.9 8.7 0.89 3.9 

SJR Oct 0.78 18 0.81 4.1 

SJR Nov 0.84 13 0.85 3.9 

SJR Dec 0.85 11 0.88 4.4 

SJR All 0.93 5 0.93 3.8 
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Table 4-11 
Scatterplot Statistics of ANN Model (Approach 2) Averaged Monthly, Grouped by River and Month  

ANN Monthly X2 (km) = C1 + C2*Observed Monthly X2 (km) 

Branch Month C2 C1 R2 Standard Error (km) 

All All 0.96 2.9 0.95 3 

SAC Jan 0.94 3.7 0.94 2.8 

SAC Feb 0.96 1.6 0.94 2.9 

SAC Mar 0.94 3.6 0.95 2.1 

SAC Apr 0.95 2.9 0.94 2.6 

SAC May 0.97 1.7 0.95 2.6 

SAC Jun 0.96 2.9 0.96 2.4 

SAC Jul 0.95 4.1 0.97 1.9 

SAC Aug 0.91 7.7 0.92 2.5 

SAC Sep 0.96 3.8 0.94 2.3 

SAC Oct 0.89 9.3 0.93 2.1 

SAC Nov 0.93 5.9 0.94 2.1 

SAC Dec 0.97 1.8 0.95 2.5 

SAC All 0.98 1.5 0.97 2.5 

SJR Jan 0.96 1.7 0.94 3 

SJR Feb 0.99 0.31 0.94 2.9 

SJR Mar 0.97 2.2 0.95 2.3 

SJR Apr 0.98 0.95 0.94 2.8 

SJR May 0.97 2 0.95 2.6 

SJR Jun 0.93 5.3 0.91 3.8 

SJR Jul 0.92 6 0.96 2.2 

SJR Aug 0.91 8.2 0.92 3.3 

SJR Sep 0.88 10 0.88 4 

SJR Oct 0.67 27 0.79 4.3 

SJR Nov 0.81 15 0.86 3.5 

SJR Dec 0.88 9.1 0.89 3.8 

SJR All 0.94 4.1 0.94 3.5 
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Table 4-12 
Scatterplot Statistics of Daily DSG Model, Grouped by River and Month.  

DSG Daily X2 (km) = C1 + C2*Observed Daily X2 (km) 

Branch Month C2 C1 R2 Standard Error (km) 

All All 0.94 5.5 0.92 4 

SAC Jan 0.8 12 0.87 4.2 

SAC Feb 0.79 13 0.86 4.1 

SAC Mar 0.78 15 0.83 4 

SAC Apr 0.83 12 0.87 3.6 

SAC May 0.86 10 0.91 3.2 

SAC Jun 0.86 11 0.95 2.7 

SAC Jul 0.92 7 0.95 2.2 

SAC Aug 1 0.53 0.94 2.2 

SAC Sep 1.1 -5.9 0.95 2.6 

SAC Oct 1.1 -6.8 0.91 3.1 

SAC Nov 1 -1.5 0.91 3.2 

SAC Dec 0.93 3.6 0.91 3.6 

SAC All 0.96 3.6 0.92 3.9 

SJR Jan 0.81 12 0.87 4.4 

SJR Feb 0.8 12 0.86 4.2 

SJR Mar 0.8 14 0.83 4.2 

SJR Apr 0.85 11 0.88 3.8 

SJR May 0.89 8.3 0.92 3.3 

SJR Jun 0.88 10 0.94 2.9 

SJR Jul 0.86 12 0.94 2.5 

SJR Aug 0.81 17 0.92 2.4 

SJR Sep 0.8 19 0.92 2.9 

SJR Oct 0.87 13 0.88 3.4 

SJR Nov 0.91 7 0.88 3.6 

SJR Dec 0.85 9.2 0.88 4.4 

SJR All 0.91 7.1 0.92 4 
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Table 4-13 
Scatterplot Statistics of Daily K-M Model, Grouped by River and Month.  

KM Daily X2 (km) = C1 + C2*Observed Daily X2 (km) 

Branch Month C2 C1 R2 Standard Error (km) 

All All 0.91 6.3 0.89 4.6 

SAC Jan 0.73 18 0.83 4.4 

SAC Feb 0.76 15 0.8 4.9 

SAC Mar 0.83 11 0.79 4.9 

SAC Apr 0.87 8.2 0.84 4.4 

SAC May 0.91 5.6 0.89 3.9 

SAC Jun 0.95 3.4 0.92 3.4 

SAC Jul 1.1 -4.2 0.89 3.6 

SAC Aug 1.1 -9.7 0.8 4.3 

SAC Sep 0.94 6.1 0.89 3.1 

SAC Oct 0.78 17 0.87 2.7 

SAC Nov 0.75 18 0.9 2.4 

SAC Dec 0.75 17 0.9 3.1 

SAC All 0.91 6.3 0.9 4.3 

SJR Jan 0.74 17 0.82 4.9 

SJR Feb 0.8 12 0.79 5.5 

SJR Mar 0.87 8.4 0.78 5.4 

SJR Apr 0.92 4.6 0.83 4.9 

SJR May 0.97 1.2 0.89 4.3 

SJR Jun 1 -1.1 0.93 3.6 

SJR Jul 1.1 -6.7 0.91 3.4 

SJR Aug 1 -2.1 0.84 4.1 

SJR Sep 0.79 18 0.86 3.8 

SJR Oct 0.72 22 0.81 3.8 

SJR Nov 0.7 23 0.84 3.3 

SJR Dec 0.69 21 0.84 4.2 

SJR All 0.91 6.3 0.89 4.9 
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Table 4-14 
Scatterplot Statistics of Jersey Point ANN Model, Grouped by Month. 

ANN Salinity (µS/cm) = C1 + C2*Observed Salinity (µS/cm) 

Month C2 C1 R2 Standard Error (µS/cm)  

Jan 0.93 58 0.9 190 

Feb 0.9 27 0.94 140 

Mar 0.89 29 0.94 110 

Apr 1 1.9 0.95 100 

May 1 15 0.93 110 

Jun 0.94 33 0.95 120 

Jul 0.96 40 0.94 150 

Aug 0.94 77 0.91 190 

Sep 0.89 150 0.9 220 

Oct 0.88 130 0.9 210 

Nov 0.91 130 0.88 270 

Dec 0.9 140 0.86 300 

all 0.94 55 0.92 190 

 

Table 4-15 
Scatterplot Statistics of Emmaton ANN Model, Grouped by Month.  

ANN Salinity (µS/cm) = C1 + C2*Observed Salinity (µS/cm)  

Month C2 C1 R2 Standard Error (µS/cm) 

Jan 0.82 91 0.88 280 

Feb 0.82 64 0.91 230 

Mar 0.92 17 0.92 190 

Apr 1 4.5 0.91 200 

May 0.94 40 0.94 190 

Jun 0.92 52 0.95 230 

Jul 0.95 35 0.94 240 

Aug 0.93 68 0.91 290 

Sep 0.95 72 0.89 330 

Oct 0.88 190 0.9 400 

Nov 0.91 120 0.87 460 

Dec 0.92 110 0.9 410 

All months 0.92 63 0.92 310 
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Figure 4-1 Scatterplot of the stationwise EC calculated from the ANN model (Approach 1) 

and observed data for the Sacramento and San Joaquin River branches. Data 
from Oct 1974 to June 2012 (WY 1975-2012). The solid line is the 1:1 slope. 
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Figure 4-2 Scatterplot of the DSG model parameters calculated from the ANN model for the 

Sacramento River stations. Blue points symbolize WY 1922-1967 data, and black 
points the WY 1968-2012 data.  
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Figure 4-3 Time series plot of the DSG model parameters calculated from the ANN model for 

the Sacramento River stations (each page shows a different time interval). 

Modeling Salinity in Suisun Bay and the western Delta Using Artificial Neural Networks  
April 2014 4-25 



Results Tetra Tech, Inc. 

 

 
Figure 4-3 (cont’d). Time series plot of the DSG model parameters calculated from the ANN 

model for the Sacramento River stations (each page shows a different time 
interval). 
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Figure 4-3 (cont’d). Time series plot of the DSG model parameters calculated from the ANN 

model for the Sacramento River stations (each page shows a different time 
interval). 
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Figure 4-3 (cont’d). Time series plot of the DSG model parameters calculated from the ANN 

model for the Sacramento River stations (each page shows a different time 
interval). 
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Figure 4-4 Scatterplot of EC calculated from the ANN model (Approach 2) and observed data 

for the Sacramento and San Joaquin River branches. Data from Oct 1974 to June 
2012 (WY 1975-2012). The solid line is the 1:1 slope. Red dots and blue dots 
represent Bulletin 23 and CDEC data, respectively. 
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Figure 4-5 Scatterplot of the interpolated daily X2 and X2 calculated from the ANN model 

(Approach 1) for the Sacramento and San Joaquin River branches, grouped by 
month. 
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Figure 4-6 Scatter plots of daily ANN model residuals (Approach 1), grouped by month and 

river.  
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Figure 4-7 Time series of daily ANN model X2 residuals grouped by month and river 

(Approach 1). Red lines, where present, indicate statistically different slopes from 
zero.  
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Figure 4-8 Scatterplot of ANN model X2 (averaged to monthly level) grouped by month and 

river (Approach 1). Solid line represent 1:1 slope. 
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Figure 4-9 Scatterplot of the interpolated daily X2 and X2 calculated from the ANN model 

(Approach 2) for the Sacramento and San Joaquin River branches, grouped by 
month. Data for WY 1922-1967 are shown in blue symbols, to identify the period 
prior to the completion of the State Water Project. 
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Figure 4-10 Scatter plots of daily ANN model residuals (Approach 2), grouped by month and 

river. Data for WY 1922-1967 are shown in blue symbols, to identify the period 
prior to the completion of the State Water Project. Red lines, where present, 
indicate statistically different slopes from zero, at the 5% significance level.  
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Figure 4-11 Time series of daily ANN model X2 residuals grouped by month and river 

(Approach 2). The red line, when present, indicates a linear time trend with a 
slope significant at the 5% level. 
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Figure 4-12 Scatterplot of ANN model X2 residuals (averaged to monthly level) grouped by 

month and river (Approach 2). Solid lines represent 1:1 slope. Data for WY 1922-
1967 are shown in blue symbols, to identify the period prior to the completion of 
the State Water Project. 
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Figure 4-13 Scatterplot of the interpolated daily X2 and X2 calculated from the daily DSG 

model for the Sacramento and San Joaquin River stations, grouped by month. 
Data for WY 1922-1967 are shown in blue symbols, to identify the period prior to 
the completion of the State Water Project. 
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Figure 4-14 Scatter plots of DSG model residuals. Data for WY 1922-1967 are shown in blue 

symbols, to identify the period prior to the completion of the State Water Project. 
Red lines, where present, indicate statistically different slopes from zero, at the 
5% significance level.  
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Figure 4-15 Time series of daily DSG model residuals. The red line, when present, indicates a 

linear time trend with a slope different from zero significant at the 5% level. 
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Figure 4-16 Scatterplot of the interpolated daily X2 and X2 calculated from the daily K-M 

model for the Sacramento and San Joaquin River stations, grouped by month. 
Data for WY 1922-1967 are shown in blue symbols, to identify the period prior to 
the completion of the State Water Project. 
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Figure 4-17 Closer examination of variation of flow, X2, and salinity data for the Sacramento 

River, 1931 and preceding twelve months. The gray bar represents the area with 
high residuals between the interpolated X2 and the Approach 2 ANN and daily 
DSG models. Plots of similar exceedances are shown in Appendix C. 
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Figure 4-18 Scatterplot of Jersey Point EC, observed and ANN calculated daily values.  
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Figure 4-19 Scatter plots of Jersey Point ANN model residuals. The red line, when present, 

indicates a slope different from zero significant at the 5% level. 
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Figure 4-20 Time series of Jersey Point ANN model residuals. Red lines, when present, 

indicate slopes that are statistically different from zero.  
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Figure 4-21 Time series of Jersey Point EC, observed daily values and ANN calculated values. 
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Figure 4-22 Scatterplot of Emmaton EC, observed and ANN calculated daily values.  
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Figure 4-23 Scatter plot of Emmaton ANN model residuals. Red lines, when present, indicate 

slopes that are statistically different from zero.  
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Figure 4-24 Time series of Emmaton ANN model residuals. Red lines, when present, indicate 

slopes that are statistically different from zero.  
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Figure 4-25 Time series of Emmaton EC, observed and ANN calculated daily values. 

 Modeling Salinity in Suisun Bay and the Western Delta Using Artificial Neural Networks 
4-50 April 2014 



Tetra Tech, Inc. Results 
 

 
Figure 4-26 Projected EC over distance under different Rio Vista flow conditions (5,000, 

10,000, and 25,000 cfs). Sensitivity computed using the Approach 1 ANN for the 
Sacramento River branch. 

 
Figure 4-27 Projected EC as a function of standardized distance (X/X2) under different Rio 

Vista flow conditions (5,000, 10,000, and 25,000 cfs). Sensitivity computed using 
the Approach 1 ANN for the Sacramento River branch. 
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Figure 4-28 Projected EC over distance due to sea level rise of 0.5 feet and 1 foot under 

different Rio Vista flow conditions (5,000, 10,000 and 25,000 cfs). Black: base, 
blue: 0.5 ft rise, red: 1 ft rise. Sensitivity computed using the Approach 1 ANN for 
the Sacramento River branch. Upper panel shows EC values, lower panel shows 
change from the 0 ft case. 
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Figure 4-29 Sensitivity of salinity to air pressure (1000, 1015, 1030 mbar), for three different 

values of Rio Vista flow (5,000, 10,000, and 25,000 cfs). Sensitivity computed 
using the Approach 1 ANN for the Sacramento River branch. Upper panel shows 
EC values, lower panel shows change from the 1,015 mbar case. 
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Figure 4-30 Sensitivity of salinity to Qwest flow (mean using relationship between Qwest and 

Rio Vista flow, mean Qwest = QRio * 0.2666 - 834.64; mean - 2,000 cfs, mean + 
2000 cfs), for three values of Rio Vista flow (5,000, 10,000, and 25,000 cfs). 
Sensitivity computed using the Approach 1 ANN for the Sacramento River 
branch. Upper panel shows EC values, lower panel shows change from the mean 
Qwest case. 
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5. SUMMARY AND RECOMMENDATIONS 
This work used the nine-decade-long record of observed daily salinity in Suisun Bay and 
the western Delta to develop ANNs using various boundary inputs. Over this period, the 
system has experienced a wide range of hydrologic, development, and regulatory 
conditions, which are embodied in the trained ANNs. There is confidence that the trained 
ANNs should represent salinity behavior over a similar range of conditions, although the 
behavior under conditions that are well outside the training envelope is not well-defined. 
This limitation applies to all data-driven tools, and the availability of the extensive data 
set in this region is central to the future utility of the ANN approach. Importantly, this 
work differs from prior salinity ANN development in the Delta region, where the training 
has been performed on synthetic data generated from the DSM2 model (Wilbur and 
Munevar, 2001; Mierzwa, 2002; Seneviratne et al., 2008). 

This work built on an initial effort with training salinity ANNs for a more limited time 
period, October 1974 to June 2012,that was reported in Chen and Roy (2013). In 
particular the ANN structure and inputs were based on the previous work, where a wide 
variety of potential inputs was explored, and ANNs that were parsimonious and provided 
good fits to the observed data were identified. Based on that assessment, the specific 
ANNs developed here used the following inputs: flows past Rio Vista on the Sacramento 
River and past Jersey Point on the San Joaquin River (identified as Qwest in the 
DAYFLOW model); astronomical tide at Golden Gate; and the residual between 
astronomical and actual tide at Golden Gate. Two model output forms were considered: 
one where the data were used directly and the second where the data on a given day were 
first fitted with a model (the Delta Salinity Gradient, or DSG model), and then the 
parameters of that model were estimated using an ANN. In each case, two models were 
developed: one for the Sacramento River and one for the San Joaquin River. The 
comparison at individual stations as time series and scatter plots was used to evaluate the 
performance.  

The outcomes of the training may be summarized as follows: 

• Initial training using the station-based approach for data from 1930-2012 showed 
relatively poor results, and this approach was modified to use the data from 1974-
2012, which corresponds to the availability of continuous EC sensor data, and which 
was shown to have a high quality ANN fit in previous work. 

• For the longer-term data (1922-2012), the DSG-based ANN provided better fits than 
obtained at the station level over 1930-2012 and was considered valid because it 
incorporated prior knowledge of the salinity gradient in the estuary. Also, the use of 
the DSG model allowed interpolation in space such that a continuous record was not 
needed at all stations of interest. This was of special benefit for the Bulletin 23 data 
where there were many gaps in the data record.  
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• For comparisons of observed and ANN-predicted EC by Approach 1, the results 
suggested a typical R2 > 0.95 for the Sacramento River model, and R2 >0.92 for the 
San Joaquin River model. In both cases, some eastern stations were not fit as well 
(such as Blind Point (BLP) (0.87), Jersey Point (JER) (0.82), Three Mile Slough 
(TSL) (0.80) and San Andreas Landing (SAL)(0.3)). 

• For comparisons of observed and ANN-predicted EC by Approach 2, results were 
not as good as for Approach 1. Results suggested a general fit of R2 near or above 
0.9 for the Sacramento River model with the exception of a few stations (PTD, PTO, 
PSP, and RVB). The CDEC stations have better fits that the Bulletin 23 stations. For 
the San Joaquin River model, the fit is generally above 0.9 with the exception of a 
few stations (OPT, PTO, SAL). 

• The overall fit of the station-based ANN (Approach 1) to interpolated X2, 
represented as R2 was 0.94 and 0.91 for the Sacramento and San Joaquin River 
models. The overall fits of the DSG-ANN model (Approach 2) to interpolated X2 
values, were slightly better (R2 = 0.95 and 0.93 for the Sacramento and San Joaquin 
River models).  

• The DSG-ANN approach (Approach 2) is a compact way to represent the entire 
salinity gradient, but some eastern locations, often with lower salinity, were poorly 
fit. Because of the importance of some of these stations for compliance with existing 
regulation, targeted station-specific ANNs were developed for two stations 
(Emmaton and Jersey Point). For future application, some combination of distance-
salinity and station-specific ANNs may be suitable to best represent the observed 
values across a wide range of distances from Golden Gate.  

• While station-specific ANNs could potentially fit data better at all stations (even 
western stations), they are not suggested as a replacement for the distance-salinity 
ANNs. This is because, (a) the distance-salinity ANNs are a more efficient 
representation of the data and encapsulate the behavior across multiple stations, and 
(b) they can be used to provide insight into the response of the horizontal salinity 
structure as a function of flow and tidal inputs in a more flexible manner than 
possible for individual ANNs for each station. 

• The DSG-based ANN approach fit the X2 values over the 50-100 km range well, and 
this represented the vast majority of the data. There were some outliers at high and 
low X2 that were challenging to fit. At extreme conditions, either very high flow or 
low and negative flows into the Delta, the underlying hydrodynamic and mixing 
processes may be different. Also, the ANN may have difficulty in representing the 
most extreme conditions due to the limited number of observations. Depending on 
the need for fully capturing this behavior, future work may need to address the small 
subset of days that are poorly described by the inputs we have used. The ANN model 
outputs for these conditions may be further evaluated against surface salinity results 
produced from other mechanistic models of the Bay-Delta, although these 
evaluations were beyond the scope of the present work. 

• An evaluation was performed of the sensitivity of individual station fits by nudging 
the distance from Golden Gate. This is potentially useful if it could be shown that 
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some stations are better represented by a different distance (an “effective” distance) 
from Golden Gate than currently applied. However, the improvements in fits, where 
obtained, were small, and the overall process is affected by the noise in the observed 
salinity. Although the concept of an effective distance is useful, other approaches, 
especially mechanistic hydrodynamic models may be more useful tools to explore 
the effects of local-scale distance on salinity.  

• The ANNs developed in this work may also be compared to existing models, 
particularly the daily DSG model operated with constant parameters, and the daily 
K-M model. For the daily DSG model, applied to fit X2, the results were as follows: 
R2 = 0.92 for both the Sacramento and San Joaquin River models). For the daily K-
M model, the R2 was 0.90 and 0.89 for the Sacramento and San Joaquin River 
branches. Thus, in aggregate, the DSG-ANN model is slightly better than the DSG 
model with constant parameters, and the station-based ANN is marginally better. 
Additional testing may need to be performed to examine whether the ANN models 
are better over specific ranges of interest for future application. 

• The trained ANNs, when operated in steady-state mode, provide some insight into 
the sensitivity of the model to specific inputs, such as sea level rise and various 
inflows. The ANNs provided results that were generally intuitive, in terms of the 
effects of salinity at specific locations and/or the location of the X2 position. The 
sensitivity analysis must be cognizant of the limited ability of ANNs to extrapolate 
beyond the training data set, and for truly significant departures from training 
conditions, such as sea level changes of several feet, other modeling tools are more 
appropriate. 

The future use of ANNs for predicting salinity must be based on the relative performance 
of this tool with other available tools, and its relative complexity. In this work we looked 
at the daily DSG model and the daily K-M model. The interpolated data were fit quite 
well with the daily DSG model, although the R2 values were slightly lower than the ANN 
model. The K-M fit was not as good, and was also limited by the ability of this model to 
represent negative Delta flows. The daily DSG model fits can be improved with bias 
correction as an alternative to future applications. For station specific application, the 
ANN approach was found to be a useful alternative to methods that are focused on the 
entire gradient. Future application may also consider more than one modeling approach 
to calculate X2 for specified conditions to obtain more robust estimates of X2 and salinity 
at specific stations. 
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