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EXECUTIVE SUMMARY 

The modeling of water quality in the Delta, for conservative and non-conservative 
constituents, has been performed extensively using the Delta Simulation Model (DSM2). 
The DSM2 model represents the mixing of freshwater and saltwater flows, and exchanges 
across islands, through the complex channel network in the Delta. Using a set of boundary 
flows and concentrations, DSM2 can compute the resulting concentrations across space 
and time within the Delta. Sometimes, however, the modeling has a different goal: Given 
a location in the Delta with concentration data, we need to know the relative contribution 
of the different boundary flows to that location, termed “fingerprinting.”  The fingerprints 
of different flows, multiplied by constituent concentrations in those flows, can also be used 
to compute in-Delta water quality. The water quality calculation works best for 
conservative, non-reactive constituents, such as major cations and anions. While the DSM2 
fingerprinting approach is a stable tool and has been in existence for more than a decade, 
it requires a fairly high level of user expertise to run, limiting its application among the 
larger community of individuals concerned with water quality management in the Delta. 

The goal of this work was the development of an easy-to-use tool that could relate the input 
flows to the Delta to volumetric contributions at in-Delta locations, with the ability to then 
incorporate the boundary concentrations to compute in-Delta concentrations. This was 
done using Artificial Neural Networks (ANNs), an empirical modeling approach that has 
had success representing complex functions, including some prior applications in the Delta. 

In this work, the Delta Simulation Model (DSM2) was first used to simulate volumetric 
contributions from boundary sources to given locations in the Delta. These results form the 
targets to which the ANNs were trained to. A total of 10 scenarios with different 
combination of exports, operation of agricultural barriers and DCC gates were simulated. 
The DSM2 model was run for a period of 19.6 years from 1990–2010.  

ANN were trained using input flows and gate conditions to reproduce the volumetric 
contribution of individual flows. The ANN models were trained for 17 pre-specified 
locations within the Delta.  

The ANN fitted and DSM2 simulated volumetric contributions over time were compared 
through time series plots and scatter plots. The results demonstrate a relatively good fit of 
ANN models to the DSM2 results (correlation coefficient, r > 0.90). 
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The use of trained ANN models to predict EC, bromide, and DOC at Delta locations also 
showed very good fits, and the ANN tool offers promise as an emulator of the DSM2 model 
that is accessible with considerably less user expertise and learning time than required to 
run the DSM2 model. Therefore, the ANN can be considered as a substitute for DSM2 for 
many situations where the operation of the full DSM2 model is not suitable, such as for 
use by non-modelers for exploring scenarios, or when multiple runs need to be performed 
to rapidly evaluate different inflow conditions, or as a precursor to performing more 
detailed DSM2 runs.   
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1 INTRODUCTION 

Simulations of dissolved and conservative constituents such as electrical conductivity 
(EC), individual cations and anions, and dissolved organic carbon (DOC) are important for 
the purpose of managing water quality in the Delta, and are tied to one or more beneficial 
uses for Delta waters. The modeling of water quality in the Delta, for conservative and 
non-conservative constituents, has been performed extensively using the Delta Simulation 
Model (DSM2). The DSM2 model represents the mixing of freshwater and saltwater flows, 
and exchanges across islands, through the complex channel network in the Delta. Using a 
set of boundary flows and concentrations, DSM2 can compute the resulting concentrations 
across space and time within the Delta. Sometimes, however, the modeling has a different 
goal: Given a location in the Delta, we need to know the relative contribution of the 
different boundary flows to that location, termed “fingerprinting.” A representation of the 
fingerprinting concept is shown in Figure 1-1, where the resulting concentration at a 
receptor or output location is shown as a mix of inputs from multiple sources.  

Because the channel paths in the Delta are complex and water residence times highly 
variable, attribution of a water quality constituent at a given receptor location, say a 
pumping station for an aqueduct, to a specific source or boundary is challenging. To 
address this need an additional DSM2 module has been developed that allows for 
fingerprinting of individual sources across the Delta (Anderson, 2002). The fingerprint 
module allows for estimation of the volumetric contribution by source, and when coupled 
with boundary concentration values—and assuming that the constituent in conservative, or 
can approximately be considered conservative—be used to relate the constituent 
contribution by source. Typical uses of the fingerprint model, for example, might be to 
estimate the contribution of San Francisco Bay inputs of salinity to the Clifton Court 
pumping intake, or the contribution of organic carbon from agricultural return flows in the 
Delta to locations of drinking water quality interest. The assumption behind the fingerprint 
calculation in DSM2, when used for calculating the concentration of a constituent, is that 
it is conservative and does not change during transport as a result of any reactions (such as 
decomposition, volatilization, or other transformation). Theoretically, the approach is 
applicable for electrical conductivity and many major cations and anions, such a Na, Ca, 
or Cl, and approximately valid for a constituent such as dissolved organic carbon (DOC), 
which can be assumed to be minimally reactive.  

The fingerprint concept can also be stated mathematically. At any given location in the 
Delta, the water volume will be a mixture of contributions from the boundary flows. The 
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contributions may be from the current time step and/or from previous time steps. The 
constituent concentrations can be calculated at each Delta location as the sum of the 
products of volumetric contributions and boundary concentrations as defined in the 
equation below:  

Cj =  ∑ ∑ Vit ∗ BCit  ∀ jit    (1) 

��Vit = 1
it

 

Cj = constituent concentration at Delta location j 

Vi = volumetric contribution from source i (i.e. fingerprint) provided by ANN models 

BCi = water quality boundary condition at source i 

t = lag index 

This allows a fingerprint model to be used to simulate conservative constituent transport 
through the Delta. 

The purpose of this work was to develop a general numeric model that can emulate the 
functionality of the DSM2 fingerprint model. The model approach described here uses the 
artificial neural network (ANN) methodology trained using DSM2 simulation data. The 
ANN approach was identified because of its success in emulating the complex processes 
in the Delta for salinity and turbidity (Finch and Sandhu, 1995; Sandhu et al., 1999; 
Seneviratne et al., 2008; Chen and Roy, 2014), as well as the extensive body of literature 
demonstrating its use in similar water resources applications, with complex, non-linear 
relationships between inputs and outputs (Maier et al., 2010; Wu et al., 2014). The primary 
benefit of the use of an ANN approach is the development of a fingerprint response that 
can be operated relatively quickly and with limited user expertise and learning time 
compared to the operation of the DSM2 model. This allows the emulator to be applied by 
a wider audience, and can also serve as a test-bed prior to detailed DSM2 simulations being 
performed. Other benefits include improved understanding of the influence of hydrologic 
conditions on salinity constituent relationships; improved methodologies for developing 
long-term planning tools; and the ability to quickly fit model results to water quality 
observation by manipulating assumed boundary conditions. 
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Figure 1-1 Conceptual representation of fingerprinting of chemical constituents in the Delta. In a 

fingerprint estimate, the goal is to find out the contribution of individual sources at an 
output location. 

An ANN basically consists of a set of nodes, in one or more layers, that connect various 
input and outputs using mathematical functions. At its most general, ANNs can be used to 
approximate any general function (Bishop, 1995), and were thus considered for use in this 
work. Given a set of inputs and outputs, the parameters associated with the ANN nodes 
(termed weights and biases) are fitted using an error minimization function. In the ANN 
literature, this is called “training” and is analogous to model calibration by adjusting 
parameters as commonly done in water resources modeling.  

In this work, for emulating the Delta fingerprinting model by DSM2, the inputs were the 
time series of daily flows at the different boundaries as well as the status of various gates 
in the Delta channels. The outputs were the DSM2-calculated monthly volumetric 
fingerprint for each input at various pre-specified locations. The task of ANN training was 
to define a reasonable network structure (number of nodes in the hidden layer) and the best 
fit weights and biases, such that the inputs when passed through the ANN emulated the 
output volumetric concentrations obtained from DSM2. The specific inputs that were used 
are as follows:  

• Delta Inflows 

o Sacramento River flow at Freeport 

o San Joaquin River flow at Vernalis 
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o Mokelumne River flow at Benson’s Ferry  

o Cosumnes River flow  

o Calaveras River flow  

o Yolo Bypass flow 

• Delta agricultural return flow 

• Martinez tide (stage) 

• Delta Gate & Barrier Operations 

o Grant Line Canal temporary barrier 

o Middle River temporary barrier  

o Old River at Tracy temporary barrier  

o Head of Old River temporary barrier  

o Delta Cross Channel (DCC) gate  

• Delta combined exports  

The specific output locations for which ANNs were trained are shown in Figure 1-2 and 
discussed in more detail in Chapter 2.  

The inputs and outputs were selected based on an identification of the major drivers of 
Delta hydrodynamics. ANNs for all output locations were given the same inputs, with the 
expectation that the training would filter out the most important contributors to volumetric 
fingerprint at each location.  

The ANN training process is shown schematically in Figure 1-3. First, a set of hydrologic 
conditions were defined and the DSM2 model was run using these inputs to produce the 
values of volumetric fingerprints at the locations shown in Figure 1-2. This is represented 
in the left limb of the schematic diagram in Figure 1-3. The same hydrologic inputs were 
given to an ANN and the training performed to match the DSM2 output data. Multiple 
ANNs were used to represent each station and the volumetric fingerprint associated with 
each of the major sources. This is shown on the right limb of Figure 1-3. The training 
process resulted in a set of ANNs that emulated the response at the seventeen pre-defined 
locations. The ANN part of this work was focused only on estimating the volumetric 
fingerprint. Once estimated, the volumetric fingerprint was associated with the constituent 
concentrations at the boundaries, through a matrix multiplication as represented in 
Equation 1, to calculate the resulting concentrations at the output locations. 

 The remainder of this report describes the approach used for developing the ANNs in 
greater detail (Chapter 2), the results from the trained ANNs (Chapter 3), and a summary 
of the key findings of this approach (Chapter 4). The data set associated with this effort is 
large, and to be efficient, key information is presented in tables in the main body of the 
report, with supporting plots presented in Appendices A through D. 
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Figure 1-2 Output locations used for training the ANN models. 
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Figure 1-3 Approach used for training the ANN models using outputs from DSM2. 
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2 APPROACH 

2.1 OVERALL APPROACH 
The goal of this work was to develop numeric models that predict concentrations of any 
conservative constituent within the Delta using the concept of volumetric fingerprinting. A 
set of DSM2 studies, with a range of gate conditions and with Delta water exports included 
or excluded, were developed to represent the volumetric fingerprint of the boundary flows. 
The volumetric fingerprint results at selected locations were then associated to the inputs 
and gate conditions using a set of ANNs. The trained ANNs are basically an empirical 
representation of the underlying hydrodynamics of the DSM2 model. In order to predict 
concentrations of any conservative constituent, the ANN models can be used to estimate 
the volumetric fingerprint of individual sources, and by multiplying with the corresponding 
concentrations at these sources, they may be used to compute the concentrations of 
conservative constituents at selected output locations. Importantly, the volumetric 
contribution of all sources is time-varying, as is the boundary concentration. The 
concentration calculation needs to take into account the time-stamp associated with the 
volumetric fingerprint. Below we describe the steps used in this work, including the DSM2 
fingerprinting runs performed and ANN training approach.  

2.2 DSM2 FINGERPRINTING RUNS  
The first step in this work, prior to the development of ANNs, was the creation of a set of 
DSM2 studies using reasonable boundary inputs that would provide a data set of volumetric 
contribution over time at multiple output locations across the Delta. The specific conditions 
used for these DSM2 runs are described below. 

2.2.1 DSM2 MODEL AND FINGERPRINTING METHODOLOGY  
The DSM2 is a one-dimensional mathematical model that simulates hydrodynamics, water 
quality and particle tracking in the Sacramento–San Joaquin Delta. Simulated Delta 
hydrodynamics and water quality conditions have been validated against hydrodynamics 
and EC data in the Delta, and the model calibration continues to evolve.1  This work is 
based on DSM2 model version 8.0.6.  

A methodology exists within DSM2, referred to as fingerprinting, that allows for 
simulation of volumetric contributions from boundary sources for any given location 
within the Delta (Anderson, 2002; Anderson and Wilde, 2005). When applying the model 

1 Current updates are available at http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/models/dsm2/dsm2.cfm. The 
most recent version of DSM2 is labeled as 8.1.2. 

State Water Project Contractors Authority   
August 2015  2-1 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 

                                                 

http://baydeltaoffice.water.ca.gov/modeling/deltamodeling/models/dsm2/dsm2.cfm


Approach Tetra Tech, Inc. 

in the fingerprinting mode, different tracers are associated with the boundary sources. The 
model calculates the relative volumetric contributions from each source. Ideally, the 
volumetric contributions to a given location from all sources should all sum up to 100%, 
although small discrepancies are possible. The DSM2 model can be used to calculate:  

• Volumetric fingerprinting – determine the relative contributions of water sources 
to the volume at any specified location  

• Volumetric and timing fingerprinting – in addition to determining the relative 
contributions of water sources to the volume at any specified location, the time 
period during which that water entered the system is also recorded.  

Because the Delta is a complex system with long residence times due to tidal influences 
and varying boundary conditions, the residence time of constituents in the Delta could be 
up to six months. Flow from a certain boundary six months ago could still contribute to 
concentrations at locations in the Delta at a point in time. For this application, volumetric 
fingerprinting with time within DSM2 was used.  

When applying the DSM2 model using fingerprinting with time, concentrations of a 
conservative constituent can be estimated by summing the volume of each source for each 
time period multiplied by concentrations of the constituent associated with that source for 
that time period.  

Ccc (t)=∑ ∑ 𝑉𝑉%𝑖𝑖,−𝑗𝑗

100
𝐶𝐶𝑖𝑖,−𝑗𝑗𝑚𝑚

𝑗𝑗=0
𝑛𝑛
𝑖𝑖=1  (2) 

Where, 

Ccc(t) = concentration of a conservative water quality constituent at a specified location and 
time,  

Ci,-j = concentration of a conservative water quality constituent from source i at time –j 
(predicted by the DSM2 model),  

n = total number of sources,  

m = length of the system memory (assumed to be up to 6 months), and  

V%i,-j = percent volume at a specified location from source i at time –j.  

Note that once the volumetric contribution from different inflows has been obtained from 
DSM2, for each defined output location, the calculation of concentration is only a matrix 
multiplication, and does not require the DSM2 water quality model to be run. 

2.2.2 NUMBER OF TRACERS USED  
The fingerprinting runs used for ANN training calculate volumetric contributions from six 
major sources (Sacramento River, San Joaquin River, Mokelumne River, Calaveras River, 
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Martinez and Yolo Bypass) and nine DICU regions. Fingerprinting with time is typically 
conducted on a monthly basis in DSM2 (Anderson, 2002). Within DSM2, the calculation 
of volumetric concentration by source is performed by using a tracer. A conservative tracer 
constituent, identified by a number, is assigned to each source location for each month, and 
the concentration of this tracer tracked to calculate the volumetric contribution of the 
corresponding source. Different months are assigned different tracers, even for the same 
location. The Delta region is considered to have a system memory of six months or less, 
therefore the contribution of any tracer beyond the previous six months was not considered, 
and it is assumed that after six months the concentrations of the tracer are diluted to near 
zero levels. Therefore, in a long-duration run, after the six month period, the numeric tracer 
for a given location was re-assigned to a new time. Therefore, the same tracer was used for 
the months of January and July, months of February and August and so on. Using this 
method, each source location is associated with six tracers, with each tracer associated with 
two months of the year (January and July, February and August etc.). With a total of 15 
source locations (6 major tributaries and 9 DICU regions), a total of 15 x 6 = 90 tracers 
were used in the DSM2 fingerprinting simulation. The specification of tracers for each 
source with time is listed in Table 2-1.  

Table 2-1  
Specified tracers for volume and time fingerprinting in the Delta 

Location\time Jan/July Feb/Aug Mar/Sep Apr/Oct May/Nov Jun/Dec 

Sacramento River 1 2 3 4 5 6 

San Joaquin River 7 8 9 10 11 12 

Martinez  13 14 15 16 17 18 

Yolo Bypass 19 20 21 22 23 24 

Mokelumne River 25 26 27 28 29 30 

Calaveras River  31 32 33 34 35 36 

DICU Region 1 37 38 39 40 41 42 

DICU Region 2 43 44 45 46 47 48 

DICU Region 3 49 50 51 52 53 54 

DICU Region 4 55 56 57 58 59 60 

DICU Region 5 61 62 63 64 65 66 

DICU Region 6 67 68 69 70 71 72 

DICU Region 7 73 74 75 76 77 78 

DICU Region 8 79 80 81 82 83 84 

DICU Region 9 85 86 87 88 89 90 

 

2.2.3 -DEFINITION OF NINE DICU REGIONS 
The Delta islands and tracts are a source of agricultural return flows with relatively high 
levels of dissolved constituents, including DOC and EC, and potentially other solutes of 
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general interest in the Delta. This discussion is presented in the context of DOC and EC, 
constituents with concentrations that have been characterized for Delta islands as part of 
the normal DSM2 setup, although it should be recognized that the formulation presented 
here applies to any conservative constituent present in the DICU flows. The ANN 
formulation allows the assignment of concentrations to nine groups of DSM2 nodes that 
correspond to inputs developed for the model. 

DOC concentrations in the agricultural return flows can be generally characterized in three 
ranges: 1) low (less than 15 mg/L), 2) mid-range (16 -30 mg/L), and 3) high (> 30 mg/l). 
These ranges of inputs are associated with different regions. Higher inputs of DOC are 
generally associated with the Central Delta, and lower DOC inputs are generally associated 
with southern and northern Delta, with mid-range DOC inputs associated with regions in 
between. Within DSM2, three sets of DOC values were assigned to the Delta islands (Table 
2-2).  

Similar to DOC, EC values have been represented by three levels in the agricultural return 
flows (three regions; Table 2-3; Figure 2-2). The spatial distributions of these three EC 
regions are different from DOC. High levels of EC in agricultural return flow are found in 
the southern and western Delta. Low EC values were found in northern Delta. The 
combination of three DOC regions and three EC regions form a total of nine DICU regions 
that have a unique combination of DOC and EC concentrations. The possible regions are 
shown in Table 2-4 as well as in Figure 2-2. 

Table 2-2  
DOC values from DICU regions in DSM2 

DOC regions Mean (mg/L) Range (mg/L) Number of nodes 

1 5.4 5.4 97 

2 9.3 7.5-12.0 88 

3 22.3 15.0-36.0 72 

 
 

Table 2-3  
EC values from DICU regions in DSM2 

EC 
regions Mean (µS/cm) Range (µS/cm) Number of nodes 

1 987 720-1350 154 

2 1272 950-1900 32 

3 571 350-820 71 
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Table 2-4  
Composite regions, consisting of DSM2 nodes, representing different EC and DOC values 

Composite 
region DOC  region EC region 

Count of DSM2 Nodes  
in this Category 

1 1 1 45 

2 2 1 65 

3 3 1 44 

4 1 2 10 

5 2 2 11 

6 3 2 11 

7 1 3 42 

8 2 3 12 

9 3 3 17 

 

 
Figure 2-1 EC concentrations used in DSM2 model. 

2.2.4 DSM2 SCENARIOS  
The DSM2 model was run in the fingerprinting mode to simulate volumetric contributions 
from a set of boundary locations. The model was run for a period of 19.6 years from 1990–
2010 (10/1/1990 – 4/26/2010; 7,147 days). A total of 10 scenarios with different 
combination of exports, operation of agricultural barriers and DCC gates were simulated 
(Table 2-5). The first scenario represented the historical condition, using inflows and gate 
settings that have occurred in the past. The nine additional scenarios represented conditions 
that included various adjustments to the historical inputs. The reason for developing 
multiple DSM2 studies was to create a large training data set for the ANNs, and to provide 
a wide range of conditions for training. The underlying idea behind this approach is that 
ANNs, like other empirical formulations, perform best at representing conditions that are 
within their training horizon, and their performance outside this range is not well defined. 
For the DSM2 simulations, the following assumptions apply:  
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• The DSM2 volumetric fingerprint simulations were customized to allow for 
unique boundary definitions listed in Section 1. Agricultural return flow regions 
defined at the intersection of the three salinity DICU regions and the three 
organic carbon DICU regions were used as boundary sources.  

• Exclude Head of Old River (HOR) barrier installation from all DSM2 
simulations outlined in Table 2-5. 

• Exclude North Bay Aqueduct (NBA) and Contra Costa Water District (CCWD) 
diversions from all DSM2 simulations outlined in Table 2-5. 
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Figure 2-2 DSM2 nodes by DICU region, classified into 9 categories as listed in Table 2-4. 
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Table 2-5  
DSM2 Fingerprinting Simulation Scenarios 

Run # Temporary Barriers DCC S. Delta Exports 

1 Historical Historical Historical 

2 In Open Historical 

3 Out Open Historical 

4 In Closed Historical 

5 Out Closed Historical 

6 Historical Historical None 

7 In Open None 

8 Out Open None 

9 In Closed None 

10 Out Closed None 

 

2.3 ARTIFICIAL NEURAL NETWORKS  
Using the volumetric fingerprint output from the multiple runs, the next step was to represent the 
outputs using one or more ANNs. The following describes the methodology employed to 
structure the ANNs for this work. 

2.3.1 MODEL INPUTS  
For the ANN model training, a set of flow and tide input variables, corresponding to the 
source locations in the DSM2 fingerprinting runs were used (Figure 2-3). These input 
variables are considered to be the main boundary conditions that influence constituent 
dynamics within Delta. These inputs are:  

• Sacramento River flow at Freeport 

• San Joaquin River flow at Vernalis 

• Mokelumne River flow at Benson’s Ferry  

• Cosumnes River flow  

• Calaveras River flow  

• Yolo Bypass flow 

• Delta agricultural return flow 

• Martinez tide 

For the DSM2 scenarios listed in Section 2.2.4 (Table 2-5), assumptions were made for 
operation of the temporary barriers, DCC gates and the south Delta exports. In order to best 
represent these scenarios, in addition to the flow and tide boundaries, operation of south 
Delta agricultural barriers (0 = closed; 1 = open), DCC gates (0 = closed; 1 = one gate 
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open; 2 = two gates open) and south Delta exports were also included in the ANN model 
inputs. These inputs are time series data of:  

• GL_CN: Grant Line Canal barrier operation, 0 or 1 

• MID_R: Middle River near Tracy barrier operation, 0 or 1  

• OLD_R: Old River at Tracy barrier operation, 0 or 1  

• ORHRB: Head of Old River barrier operation, 0 or 1  

• DCC gate: DCC gates operation, 0, 1, or 2  

• Delta combined exports  

The Martinez tide value is the historical mean sea level data at Martinez. The Delta 
combined exports are total exports of SWP, CVP, Contra Costa Canal (CCC) and Contra 
Costa Los Vaqueros (LVR). As a result, a total of 14 input variables (Table 2-6) were used 
as the ANN model inputs. Values of these 14 input variables were derived from DSM2 
model inputs. Because the model inputs are primarily based on historical observed values, 
they are easier to derive when applying the ANN models for future simulations. The 
application of the ANN model will not depend on other models (e.g. DSM2) to derive the 
inputs.  

Table 2-6  
Inputs for ANN model development  

Model Input Units 

Sacramento River flow at Freeport cfs 

San Joaquin River flow at Vernalis cfs 

Mokelumne River flow at Benson’s Ferry cfs 

Cosumnes River flow cfs 

Calaveras River flow cfs 

Yolo Bypass Flow  cfs 

Delta agricultural return flow cfs 

Martinez tide (msl) ft 

Grant Line Canal barrier operation  0,1 

Middle River near Tracy operation 0,1 

Old River at Tracy barrier operation  0,1 

Head of Old River barrier operation 0,1 

DCC gates  0,1,2* 

Delta combined exports cfs  

*0: Gate is fully closed; 1: One gate is fully open; 2: two gates are fully open  
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Figure 2-3a Sacramento River 
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Figure 2-3b San Joaquin River  
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Figure 2-3c Yolo Bypass 
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Figure 2-3d Mokelumne River  
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Figure 2-3e ANN inputs of flow from boundaries at: a) Sacramento River, b) San Joaquin River, c) Yolo Bypass, d) Mokelumne River, and 

e) Calaveras River. 
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2.3.2 ANN OUTPUT LOCATIONS 
The DSM2 model was used to simulate the volumetric contributions of flow from six 
boundary locations (Sacramento River,  San Joaquin River, Yolo Bypass, Calaveras River, 
Mokelumne River and Cosumnes River combined, and Martinez flows) and nine DICU 
regions to the 17 output locations (Figure 1-2; Table 2-7). The results from DSM2 
simulations are volumetric contributions from these 15 sources (six boundaries and nine 
DICU regions) with time stamps associated for a six month period. For each location 
therefore, and in each month, we obtain from DSM2, the volumetric fingerprint from a 
source for the current month (termed V1%), the preceding month (termed V2%), and so on 
till the sixth month (V6%). The simulated volumetric contributions from the 90 tracers (15 
sources with 6 time stamps) for each of these 17 locations were used in the ANN training. 
As a specific example, if we are considering the CCF intake station, the ANNs would 
compute the volumetric fingerprint for all 15 sources (Sacramento River, San Joaquin 
River, Yolo Bypass, Calaveras River, Mokelumne River and Cosumnes River combined, 
and Martinez flows and nine DICU regions) with a time stamp for each of the 15 sources. 
So, for a given month, we would know the percentage of water contributed by the 
Sacramento River at the current and previous five months of flows.  

2.3.3 ANN MODEL STRUCTURE 
The dynamic nature of flow and mixing in the Delta is best represented by a network 
structure that allows for a time series input, with current and previous values of inputs 
being considered. This is done using an architecture called the multi-layer perceptrons 
(MLPs). Although other network structures have received attention in the recent literature, 
MLPs are by far the most popular network structure used in similar water resources 
applications, and represent more than 90% of peer-reviewed applications in the water 
resources field (Maier et al. 2010). For this reason, the feedforward MLP network was 
selected in this study, and is shown schematically in Figure 2-4.  

All ANNs had the same inputs but were trained for different outputs. We trained the ANNs 
for each of the six tracers for Sacramento River at Freeport volume percent (6 separate 
ANNs), DICU flow volume percent (9 separate ANNs), Vernalis volume percent (1 ANN), 
Calaveras volume percent (1 ANN), Mokelumne+Cosumnes volume percent (1 ANN), 
Yolo volume percent (1 ANN), Martinez volume percent (1 ANN). This forms a total of 
20 ANNs for each output location. Other than the Sacramento River ANNs, each of the 
other ANNs have 6 outputs for each of the 6 tracers corresponding to that inflow; thus, the 
Vernalis ANN produces the output for V1% through V6% for tracers originating at 
Vernalis. For the 17 target locations in Table 2-7, we used 17x20 ANNs. 
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Table 2-7  
ANN Model Output Locations 

Model Output Location Code Channel No Distance 

Port Chicago RSAC064 452 190 

Mallard/Chipps Island RSAC075 437 11108 

Collinsville RSAC081 436 5733 

Antioch RSAN007 52 366 

Emmaton RSAC092 434 435 

Rio Vista RSAC101 430 9684 

Jersey Point RSAN018 83 4213 

Old River @ Bacon Island ROLD024 106 2718 

Old River @ Highway 4 ROLD034 90 3021 

CCF Intake CHSWP003 82 286 

Jones Pumping Plant CHDMC004 181 0 

SJR @ Prisoner’s Point RSAN037 42 286 

Middle River @ Holt RMID005 156 140 

Middle River @ Victoria RMID027 230 0 

Old River @ Tracy Rd Bridge ROLD059 71 3116 

Middle River @ Union Island RMID041 125 1700 

SJR @ Hwy 4 nr. Antioch  RSAN008 52 0 

 

 
Figure 2-4 Feed-forward ANN model structure (inputs = 14 boundaries, hidden neurons = 30; time 

delay = 180 days; outputs: volumetric contribution for 6 time steps). x(t) represents the 
input, y(t) the output, and W and b represents the weights and biases.  

In this network, the input layer, termed x(t) contains time series of fourteen input variables 
(flows and gate status). The hidden layer uses 30 neurons, which is formulated based on 
input variables using a set of weights (W) and biases (b). For the 30 neurons and 14 input 
variables, this yielded a total of 420 weights and 420 bias parameters that were adjusted 
during training. An input time delay of 180 days was used, given the long residence time 
in the Delta that could be up to 6 months. The output layer, y(t), contains the volumetric 
contributions over 6 months. As described above, a single ANN was used to train for a 
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single source of flow. The hidden layer is converted to the output layer through another set 
of weights and biases. All weights and biases are estimated during the ANN training 
process. 

2.3.4 TRAINING TECHNIQUE AND DATASET DIVISION 
With the large dataset used in the training (outputs from 14 sources at 6 time steps, 17 
output locations, and 10 DSM2 scenarios), the training was conducted separately for 
different stations and sources. Each scenario consisted of approximately 19.5 years x 365 
day/year = 7148 data points. A typical training is for contributions from one source to one 
location. The inputs are time series data of flow from 14 sources and the outputs are 
volumetric contribution from one source to one location at six time steps (six columns) for 
the 10 scenarios. This requires generally a total of 20 ANNs at each location (with 
Sacramento River source trained at each time tracer individually). Because of the large 
dataset and the long time delay (180 days) involved in the training, the requirements for 
computer system memory and speed were large. For this work, the Scaled Conjugated 
Gradient (SCG) approach was used in the training, which has been shown to provide much 
faster convergence than other error minimization approaches (Beale et al. 2012).  

For each training run, the data were divided in the following manner: 70%, 15%, and 15% 
was used for training, validation and testing, respectively. The data points for training, 
validation and testing were randomly selected from the entire dataset for each training 
cycle. Because the training outputs are six variables representing volumetric contribution 
from six time periods, the output values can be very different among the six variables 
depending on location and time of the year. It is not unusual for the volumetric contribution 
from one time period to be much greater than other time periods. The DSM2 simulated 
volumetric contribution could vary from 90% to less than 1%. Given the large range in the 
six output variables, the error minimization approach used for the training is mean standard 
error (mse) with ‘percent’ normalization. Using this normalization, the error was 
normalized to the range of [-1, +1] during training (Beale et al. 2012).  

2.4 PROPOSED APPLICATION 
Once ANNs have been trained to calculate the volumetric contribution of different sources 
using hydrology at the boundaries, they can be used to compute concentrations at the output 
locations. This is done by multiplying the percent volume of each source/time stamp with 
the concentration associated with that source/time stamp (schematic representation in 
Figure 2-5). For example, if at a station we have a volumetric concentration from the San 
Joaquin River over a six month period, the volume percentages for each of the six monthly 
intervals would be multiplied by the concentration at the San Joaquin River in that month. 
This process would be repeated for each of the sources to compute the total concentration 
of any constituent.
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Figure 2-5 Typical application of fingerprint ANN model. 

 

ANNs for Location “X”
ANNs for Location “X”ANNs for Location “X”

ANNs for Location “X”
ANNs for Location “X”ANNs for Location “X”

Scenario Input (Hydrology)
-Delta Inflows

-Exports
-Martinez Tide

-Total DICU Flows
-Gate Operations

Scenario Input (Water Quality)
-Delta Inflows

-Martinez 
-9 DICU Regions

Predicted 
volumetric 

contribution of 
boundary flows 
at location “X’

ANNs for Location “X”
ANNs for Location “X”ANNs for Location “X”

Predicted water 
quality at 

location “X’

Typical ANN Application

  State Water Project Contractors Authority 
2-18  August 2015 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



 

3 RESULTS 

3.1 DSM2 SIMULATED VOLUMETRIC CONTRIBUTION AT TARGET LOCATIONS  
The DSM2 model was run for 10 scenarios described in Chapter 2, for a time period from 
1990-2010. The simulated daily volumetric contributions are available at 17 target 
locations. An example of these results is shown in Appendix A for one location (Clifton 
Court Forebay, CCF) and for one scenario (Scenario 10). Similar results could be plotted 
for each of the 17 output locations and for the 10 DSM2 scenarios, but are not shown for 
brevity. 

3.2 PRELIMINARY VALIDATION RESULTS  
Prior to the ANN training, the DSM2 fingerprinting results were first validated against 
DSM2 simulated EC at six locations (Table 3-1):  

• Jones Pumping Plant,  

• CCF intake,  

• Old River at Bacon Island,  

• San Joaquin River at Jersey Point,  

• Sacramento River at Mallard Island, and  

• Old River at Highway 4.  

This validation exercise is primarily a test of the fingerprint model, averaged daily, to 
represent values calculated through DSM2 operating in the normal mode. For each 
location, the DSM2 simulated volumetric contribution from boundary sources, along with 
EC concentrations at boundaries, was used to predict EC at the above validation locations. 
EC concentrations were calculated as the sum of the products of volumetric contributions 
and boundary concentrations (including lagged terms) as shown in Equation 2.  

The estimated EC from DSM2 finger printing results were compared to DSM2 simulated 
EC at the six validation locations. The results suggested good agreement between 
fingerprinting results and the DSM2 simulated EC (Appendix B). However, due to the tidal 
effects, EC concentrations vary substantially at Martinez over the course of a day. Usually 
lower EC is associated with high volumetric contribution from Martinez during the day. 
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Because the finger printing results were output at a daily time step, a daily average EC at 
Martinez often over estimated EC at validation locations. An average of EC during flood 
tide better represents EC contributions from Martinez. Therefore in these validation results, 
an average of EC during flood tide multiplied by a factor of 0.9 was used for EC at 
Martinez, and matched the normal DSM2 results very well.  

Table 3-1  
Summary of Locations of Six Validation Stations 

Location DSM2 Channel Name DSM2 Channel 

CCF Intake CHSWP003 82 

Jones Pumping Plant  Chdmc004 216 

Old River at Bacon Island  ROLD024 106 

Sacramento River at Mallard Island  RSAC075 437 

San Joaquin River at Highway 4  RSAN063 15 

San Joaquin River at Jersey Point  RSAN018 83 

 

3.3 ANN TRAINING RESULTS  
The ANN training was conducted using the feedforward network with a time delay of 180 
days. The ANN fitted and DSM2 simulated volumetric contribution at six time steps were 
compared through time series plots and scatter plots. Results of these comparisons as time 
series and scatter plots are shown in Appendix C for two sample locations (CCF and 
Antioch). The DSM2 simulated and ANN fitted volumetric contribution for the entire time 
period were also compared for CCF and Antioch (Figure 3-1 and Figure 3-2). The DSM2 
simulated and ANN fitted volumetric contribution from different flow components are 
shown for a few years from 1996-1999 in Figure 3-4 to Figure 3-14. The correlation 
between ANN-fitted and DSM2-simulated volumetric contribution was also calculated 
(Table 3-2). Results are shown here for the six largest volumetric contributors: Calaveras 
(CAL), Mokelumne+Cosumnes (MOK), San Joaquin (SJR), Martinez (MTZ), and the 
Sacramento River (SAC). To keep the table and evaluation to a manageable size, the nine 
individual DICU flows (which are a smaller volumetric source) are not shown. Slopes and 
intercepts of regressions between ANN fitted and DSM2 simulated results were also 
calculated (Table 3-3 and Table 3-4). The fit in terms of correlation coefficient is usually 
above 0.9 with a few exceptions. Generally stations on the Sacramento River and San 
Joaquin River tributaries have better fits than stations located at Old River and Middle 
River. This is probably due to stations at Sacramento and San Joaquin Rivers being more 
highly influenced by ANN model inputs of a single input (either Sacramento or San 
Joaquin River flow). Old River at Union Island showed good fit for SJR contribution but 
has poor fit for other sources. This is because the SJR is dominant source and contribution 
from other sources is very small and more difficult to fit.  
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Additional time series plots at different scales provide additional insight into the operation 
of the ANN models. Thus, Figure 3-1 and Figure 3-2 show the comparison of DSM2 and 
ANN calculated fingerprints from the different volumetric sources at two different 
locations, Antioch and CCF. In general it appears that the ANNs capture the main 
characteristics of the variation over time. Figure 3-3 through Figure 3-14 present a more 
detailed examination of the DSM2 results and the ANN emulation. Results are shown for 
contributions to the CCF and Antioch locations for single components of flow. In general, 
the ANNs appear to emulate the DSM2 signal with fairly high accuracy.  
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Table 3-2  
Correlation (r) between ANN fitted and DSM2 simulated volumetric contribution from six major 

boundaries at 17 locations with six time steps (Highlighted cells indicate r > 0.9) 

Station Source %V1 %V2 %V3 %V4 %V5 %V6 

SJR@HWY4 CAL 0.965 0.967 0.946 0.939 0.963 0.925 

MOK 0.942 0.957 0.953 0.948 0.974 0.965 

SJR 0.97 0.956 0.97 0.974 0.976 0.962 

MTZ 0.955 0.958 0.961 0.95 0.957 0.938 

Yolo 0.962 0.956 0.976 0.933 0.931 0.702 

SAC 0.989 0.982 0.99 0.984 0.988 0.986 

SJR@ Jersey Point CAL 0.964 0.958 0.916 0.927 0.968 0.95 

MOK 0.936 0.954 0.954 0.96 0.971 0.959 

SJR 0.971 0.965 0.958 0.972 0.975 0.975 

MTZ 0.942 0.953 0.945 0.901 0.924 0.918 

Yolo 0.949 0.947 0.971 0.898 0.933 0.891 

SAC 0.986 0.975 0.986 0.986 0.986 0.987 

SJR @ Prisoner’s Point CAL 0.956 0.97 0.936 0.912 0.954 0.938 

MOK 0.856 0.884 0.851 0.893 0.904 0.846 

SJR 0.952 0.946 0.956 0.961 0.966 0.949 

MTZ 0.951 0.959 0.959 0.949 0.927 0.947 

Yolo 0.973 0.937 0.927 0.911 0.907 0.915 

SAC 0.988 0.987 0.978 0.983 0.99 0.986 

Emmaton  CAL 0.931 0.946 0.932 0.918 0.937 0.943 

MOK 0.902 0.912 0.925 0.918 0.923 0.934 

SJR 0.944 0.851 0.925 0.958 0.954 0.956 

MTZ 0.955 0.928 0.969 0.956 0.944 0.925 

Yolo 0.988 0.99 0.992 0.933 0.899 0.939 

SAC 0.98 0.981 0.981 0.982 0.988 0.991 

Rio Vista  CAL 0.91 0.951 0.915 0.947 0.911 0.931 

MOK 0.839 0.908 0.9 0.824 0.911 0.929 

SJR 0.87 0.874 0.876 0.919 0.921 0.91 

MTZ 0.964 0.949 0.968 0.802 0.917 0.904 

Yolo 0.984 0.984 0.989 0.969 0.868 0.908 

SAC 0.988 0.987 0.99 0.989 0.988 0.988 

Collinsville CAL 0.952 0.956 0.912 0.916 0.955 0.925 
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Station Source %V1 %V2 %V3 %V4 %V5 %V6 

MOK 0.881 0.908 0.869 0.929 0.945 0.943 

SJR 0.928 0.907 0.951 0.975 0.965 0.952 

MTZ 0.939 0.901 0.947 0.941 0.922 0.942 

Yolo 0.986 0.989 0.993 0.966 0.899 0.913 

SAC 0.987 0.975 0.987 0.985 0.989 0.991 

Mallard/Chipps  CAL 0.969 0.969 0.932 0.94 0.97 0.935 

MOK 0.939 0.936 0.93 0.955 0.973 0.968 

SJR 0.971 0.966 0.954 0.975 0.978 0.969 

MTZ 0.925 0.924 0.921 0.929 0.944 0.931 

Yolo 0.987 0.99 0.992 0.969 0.811 0.931 

SAC 0.986 0.968 0.984 0.988 0.988 0.987 

Port Chicago  CAL 0.977 0.966 0.936 0.959 0.963 0.933 

MOK 0.95 0.953 0.955 0.956 0.98 0.965 

SJR 0.97 0.954 0.972 0.981 0.981 0.952 

MTZ 0.911 0.889 0.862 0.908 0.92 0.917 

Yolo 0.991 0.993 0.996 0.975 0.9 0.743 

SAC 0.986 0.985 0.987 0.99 0.987 0.987 

Old River Tracy  CAL 0.817 0.77 0.913 0.837 0.904 0.914 

MOK 0.939 0.629 0.676 0.862 0.859 0.864 

SJR 0.895 0.881 0.88 0.885 0.889 0.877 

MTZ 0.835 0.915 0.889 0.892 0.866 0.909 

Yolo 0.945 0.873 0.711 0.899 0.782 0.755 

SAC 0.909 0.946 0.969 0.965 0.954 0.968 

Old River @ HWY4 CAL 0.892 0.828 0.775 0.925 0.927 0.956 

MOK 0.954 0.933 0.948 0.922 0.914 0.905 

SJR 0.93 0.936 0.925 0.928 0.945 0.912 

MTZ 0.901 0.92 0.874 0.862 0.846 0.932 

Yolo 0.969 0.916 0.893 0.943 0.902 0.93 

SAC 0.985 0.982 0.992 0.987 0.993 0.992 

Old River @ Bacon  CAL 0.812 0.871 0.556 0.911 0.931 0.919 

MOK 0.936 0.937 0.932 0.951 0.961 0.938 

SJR 0.959 0.955 0.962 0.961 0.969 0.952 

MTZ 0.917 0.888 0.926 0.852 0.872 0.868 

Yolo 0.963 0.913 0.869 0.952 0.937 0.936 

SAC 0.99 0.986 0.987 0.99 0.986 0.991 

Middle River @ Union 
Island 

CAL 0.074 0.811 0.360 0.270 0.292 0.070 

MOK 0.007 0.006 0.248 0.463 0.351 0.250 
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Station Source %V1 %V2 %V3 %V4 %V5 %V6 

SJR 0.941 0.927 0.921 0.948 0.943 0.943 

MTZ 0.018 0.112 0.465 0.346 0.586 0.464 

Yolo 0.051 -0.13 0.494 0.695 0.819 0.563 

SAC 0.714 0.959 0.579 0.832 0.771 0.179 

Middle River @ Holt CAL 0.876 0.932 0.867 0.952 0.944 0.91 

MOK 0.909 0.915 0.93 0.901 0.922 0.918 

SJR 0.946 0.936 0.952 0.958 0.963 0.947 

MTZ 0.864 0.867 0.867 0.86 0.836 0.926 

Yolo 0.974 0.946 0.909 0.911 0.899 0.942 

SAC 0.991 0.99 0.992 0.985 0.987 0.991 

Middle River @ Victoria CAL 0.864 0.768 0.826 0.885 0.897 0.899 

MOK 0.923 0.943 0.938 0.886 0.922 0.924 

SJR 0.928 0.937 0.927 0.927 0.926 0.921 

MTZ 0.865 0.935 0.907 0.885 0.909 0.936 

Yolo 0.966 0.936 0.933 0.93 0.859 0.936 

SAC 0.992 0.986 0.988 0.988 0.982 0.986 

Jones Pumping CAL 0.949 0.943 0.962 0.941 0.964 0.97 

MOK 0.956 0.968 0.944 0.927 0.947 0.96 

SJR 0.951 0.951 0.957 0.969 0.959 0.96 

MTZ 0.966 0.965 0.966 0.961 0.971 0.968 

Yolo 0.974 0.946 0.905 0.872 0.864 0.938 

SAC 0.993 0.991 0.992 0.98 0.991 0.988 

CCF Intake  CAL 0.85 0.919 0.945 0.867 0.906 0.957 

MOK 0.949 0.948 0.916 0.829 0.917 0.935 

SJR 0.94 0.908 0.931 0.916 0.944 0.934 

MTZ 0.945 0.946 0.933 0.931 0.928 0.912 

Yolo 0.961 0.939 0.874 0.9 0.891 0.912 

SAC 0.992 0.991 0.99 0.989 0.99 0.991 

Antioch  CAL 0.969 0.967 0.937 0.943 0.967 0.938 

MOK 0.945 0.966 0.956 0.934 0.971 0.96 

SJR 0.968 0.96 0.971 0.977 0.978 0.971 

MTZ 0.945 0.95 0.96 0.944 0.927 0.939 

Yolo 0.956 0.955 0.977 0.95 0.932 0.926 

SAC 0.987 0.978 0.976 0.986 0.987 0.988 

CAL: Calaveras River; MOK: Mokelumne River; SJR: San Joaquin River; MTZ: Martinez; Yolo: Yolo Bypass; 
SAC: Sacramento River. %V1-V6: volumetric contributions from six time periods (i.e., months of January and 
July, months of February and August, months of March and September and so on). Shaded cells have 
correlations greater than 0.9.  
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Tetra Tech, Inc. Results 

Table 3-3  
Slope for linear regression of ANN fitted and DSM2 simulated volumetric contribution from six 

major boundaries at 17 locations with six time steps 

Station Source %V1 %V2 %V3 %V4 %V5 %V6 

SJR@HWY4 CAL 0.933 0.943 0.914 0.887 0.928 0.841 

MOK 0.893 0.914 0.913 0.896 0.955 0.930 

SJR 0.945 0.914 0.938 0.954 0.969 0.935 

MTZ 0.922 0.932 0.924 0.901 0.926 0.879 

Yolo 0.920 0.920 0.955 0.871 0.862 0.505 

SAC 0.980 0.965 0.978 0.966 0.975 0.971 

SJR@ Jersey Point CAL 0.934 0.927 0.820 0.870 0.941 0.905 

MOK 0.873 0.923 0.908 0.928 0.939 0.924 

SJR 0.939 0.937 0.916 0.946 0.953 0.958 

MTZ 0.878 0.908 0.913 0.808 0.858 0.848 

Yolo 0.906 0.889 0.943 0.800 0.867 0.815 

SAC 0.972 0.953 0.972 0.972 0.971 0.974 

SJR @ Prisoner’s Point CAL 0.921 0.943 0.877 0.824 0.907 0.878 

MOK 0.749 0.784 0.707 0.811 0.824 0.705 

SJR 0.906 0.896 0.919 0.924 0.933 0.907 

MTZ 0.906 0.931 0.922 0.890 0.866 0.899 

Yolo 0.948 0.866 0.856 0.830 0.827 0.832 

SAC 0.976 0.974 0.957 0.967 0.979 0.975 

Emmaton  CAL 0.849 0.898 0.878 0.855 0.867 0.899 

MOK 0.827 0.848 0.849 0.851 0.841 0.893 

SJR 0.904 0.719 0.855 0.926 0.917 0.923 

MTZ 0.916 0.869 0.940 0.923 0.888 0.860 

Yolo 0.977 0.979 0.988 0.864 0.811 0.882 

SAC 0.965 0.965 0.962 0.967 0.977 0.985 

Rio Vista  CAL 0.821 0.907 0.842 0.905 0.827 0.868 

MOK 0.708 0.840 0.800 0.683 0.838 0.884 

SJR 0.768 0.766 0.759 0.851 0.848 0.838 

MTZ 0.928 0.904 0.953 0.630 0.845 0.812 

Yolo 0.965 0.966 0.980 0.949 0.752 0.806 

SAC 0.978 0.975 0.980 0.979 0.978 0.978 

Collinsville CAL 0.914 0.901 0.844 0.852 0.911 0.858 
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Results Tetra Tech, Inc. 

Station Source %V1 %V2 %V3 %V4 %V5 %V6 

MOK 0.766 0.832 0.751 0.883 0.897 0.894 

SJR 0.872 0.834 0.905 0.959 0.929 0.912 

MTZ 0.888 0.811 0.903 0.885 0.857 0.905 

Yolo 0.975 0.984 0.988 0.942 0.794 0.853 

SAC 0.974 0.957 0.976 0.972 0.978 0.986 

Mallard/Chipps  CAL 0.934 0.940 0.866 0.888 0.946 0.867 

MOK 0.877 0.885 0.866 0.925 0.949 0.938 

SJR 0.949 0.942 0.903 0.948 0.962 0.934 

MTZ 0.860 0.869 0.848 0.868 0.891 0.867 

Yolo 0.976 0.976 0.986 0.939 0.659 0.881 

SAC 0.973 0.941 0.970 0.979 0.978 0.977 

Port Chicago  CAL 0.956 0.937 0.874 0.909 0.930 0.863 

MOK 0.894 0.916 0.910 0.928 0.960 0.938 

SJR 0.950 0.922 0.943 0.970 0.966 0.914 

MTZ 0.832 0.793 0.773 0.848 0.857 0.849 

Yolo 0.983 0.992 0.996 0.948 0.808 0.514 

SAC 0.973 0.970 0.975 0.980 0.975 0.972 

Old River Tracy  CAL 0.673 0.594 0.838 0.705 0.829 0.839 

MOK 0.887 0.393 0.477 0.747 0.722 0.753 

SJR 0.816 0.772 0.783 0.781 0.793 0.768 

MTZ 0.724 0.861 0.792 0.793 0.764 0.826 

Yolo 0.899 0.765 0.480 0.816 0.598 0.593 

SAC 0.829 0.894 0.941 0.935 0.919 0.937 

Old River @ HWY4 CAL 0.803 0.701 0.621 0.853 0.874 0.914 

MOK 0.913 0.867 0.905 0.851 0.838 0.835 

SJR 0.871 0.882 0.865 0.875 0.887 0.835 

MTZ 0.807 0.842 0.792 0.732 0.737 0.859 

Yolo 0.930 0.826 0.811 0.896 0.808 0.868 

SAC 0.973 0.964 0.986 0.975 0.987 0.984 

Old River @ Bacon  CAL 0.667 0.763 0.313 0.837 0.867 0.844 

MOK 0.877 0.882 0.868 0.906 0.927 0.878 

SJR 0.935 0.918 0.928 0.918 0.943 0.905 

MTZ 0.857 0.797 0.855 0.700 0.780 0.761 

Yolo 0.931 0.835 0.730 0.897 0.897 0.865 

SAC 0.978 0.971 0.975 0.982 0.974 0.981 

Middle River @ Union 
Island 

CAL 0.020 0.759 0.414 0.075 0.075 0.007 

MOK 0.004 0.002 0.085 0.178 0.086 0.089 
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Station Source %V1 %V2 %V3 %V4 %V5 %V6 

SJR 0.893 0.861 0.866 0.910 0.882 0.907 

MTZ 0.003 0.027 0.207 0.113 0.373 0.216 

Yolo 0.034 -0.05 0.253 0.568 0.629 0.355 

SAC 0.528 0.924 0.318 0.676 0.579 0.042 

Middle River @ Holt CAL 0.767 0.890 0.742 0.910 0.898 0.831 

MOK 0.826 0.853 0.868 0.810 0.852 0.847 

SJR 0.901 0.882 0.907 0.920 0.926 0.897 

MTZ 0.783 0.750 0.762 0.744 0.688 0.852 

Yolo 0.953 0.885 0.822 0.812 0.838 0.883 

SAC 0.983 0.980 0.982 0.970 0.974 0.982 

Middle River @ Victoria CAL 0.770 0.615 0.662 0.794 0.808 0.818 

MOK 0.861 0.900 0.884 0.773 0.852 0.845 

SJR 0.864 0.879 0.875 0.868 0.866 0.851 

MTZ 0.745 0.891 0.818 0.784 0.848 0.862 

Yolo 0.928 0.880 0.863 0.865 0.746 0.873 

SAC 0.985 0.973 0.976 0.973 0.964 0.972 

Jones Pumping CAL 0.912 0.900 0.922 0.887 0.932 0.938 

MOK 0.910 0.941 0.898 0.860 0.893 0.929 

SJR 0.910 0.907 0.921 0.938 0.922 0.922 

MTZ 0.943 0.936 0.938 0.919 0.946 0.930 

Yolo 0.951 0.880 0.835 0.769 0.731 0.878 

SAC 0.985 0.982 0.985 0.959 0.981 0.980 

CCF Intake  CAL 0.713 0.852 0.895 0.753 0.833 0.927 

MOK 0.908 0.910 0.833 0.659 0.841 0.893 

SJR 0.890 0.823 0.875 0.832 0.897 0.886 

MTZ 0.913 0.893 0.899 0.847 0.863 0.825 

Yolo 0.936 0.869 0.752 0.820 0.810 0.832 

SAC 0.983 0.981 0.980 0.976 0.982 0.985 

Antioch  CAL 0.937 0.938 0.873 0.891 0.932 0.894 

MOK 0.897 0.942 0.920 0.871 0.943 0.932 

SJR 0.945 0.928 0.945 0.958 0.957 0.947 

MTZ 0.905 0.902 0.915 0.898 0.850 0.884 

Yolo 0.920 0.922 0.960 0.900 0.863 0.861 

SAC 0.976 0.958 0.950 0.972 0.975 0.978 

CAL: Calaveras River; MOK: Mokelumne River; SJR: San Joaquin River; MTZ: Martinez; Yolo: Yolo Bypass; 
SAC: Sacramento River. %V1-V6: volumetric contributions from six time periods (i.e., months of January and 
July, months of February and August, months of March and September and so on).  
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Results Tetra Tech, Inc. 

Table 3-4  
Intercept for linear regression of ANN fitted and DSM2 simulated volumetric contribution from six 

major boundaries at 17 locations with six time steps 

Station Source %V1 %V2 %V3 %V4 %V5 %V6 

SJR@HWY4 CAL 0.004 0.006 0.008 0.012 0.006 0.012 

MOK 0.052 0.039 0.061 0.068 0.024 0.030 

SJR 0.086 0.050 0.067 0.137 0.090 0.106 

MTZ 0.246 0.246 0.246 0.246 0.246 0.246 

Yolo 0.399 0.399 0.399 0.399 0.399 0.399 

SAC 0.280 0.280 0.280 0.280 0.280 0.280 

SJR@ Jersey Point CAL 0.391 0.391 0.391 0.391 0.391 0.391 

MOK 0.273 0.273 0.273 0.273 0.273 0.273 

SJR 0.342 0.342 0.342 0.342 0.342 0.342 

MTZ 0.063 0.098 0.132 0.092 0.066 0.091 

Yolo 0.040 0.037 0.019 0.021 0.027 0.113 

SAC 0.007 0.008 0.021 0.017 0.006 0.007 

SJR @ Prisoner’s Point CAL 0.083 0.053 0.076 0.051 0.030 0.045 

MOK 0.032 0.019 0.027 0.051 0.031 0.027 

SJR 0.383 0.383 0.383 0.383 0.383 0.383 

MTZ 0.644 0.644 0.644 0.644 0.644 0.644 

Yolo 0.383 0.383 0.383 0.383 0.383 0.383 

SAC 0.412 0.412 0.412 0.412 0.412 0.412 

Emmaton  CAL 0.322 0.322 0.322 0.322 0.322 0.322 

MOK 0.262 0.262 0.262 0.262 0.262 0.262 

SJR 0.097 0.111 0.197 0.166 0.083 0.059 

MTZ 0.043 0.015 0.027 0.025 0.019 0.034 

Yolo 0.023 0.014 0.052 0.063 0.034 0.039 

SAC 0.229 0.167 0.324 0.184 0.155 0.223 

Rio Vista  CAL 0.005 0.005 0.004 0.005 0.004 0.004 

MOK 0.235 0.235 0.235 0.235 0.235 0.235 

SJR 0.253 0.253 0.253 0.253 0.253 0.253 

MTZ 0.397 0.397 0.397 0.397 0.397 0.397 

Yolo 0.230 0.230 0.230 0.230 0.230 0.230 

SAC 0.137 0.137 0.137 0.137 0.137 0.137 

Collinsville CAL 0.250 0.250 0.250 0.250 0.250 0.250 
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Tetra Tech, Inc. Results 

Station Source %V1 %V2 %V3 %V4 %V5 %V6 

MOK 0.409 0.407 0.564 0.499 0.469 0.426 

SJR 0.002 0.006 0.006 0.003 0.004 0.005 

MTZ 0.004 0.003 0.004 0.007 0.004 0.002 

Yolo 0.014 0.017 0.025 0.030 0.026 0.014 

SAC 0.033 0.031 0.018 0.024 0.036 0.038 

Mallard/Chipps  CAL 0.488 0.488 0.488 0.488 0.488 0.488 

MOK 0.524 0.524 0.524 0.524 0.524 0.524 

SJR 0.679 0.679 0.679 0.679 0.679 0.679 

MTZ 0.516 0.516 0.516 0.516 0.516 0.516 

Yolo 0.324 0.324 0.324 0.324 0.324 0.324 

SAC 0.200 0.200 0.200 0.200 0.200 0.200 

Port Chicago  CAL 0.033 0.091 0.076 0.048 0.050 0.030 

MOK 0.024 0.013 0.026 0.052 0.062 0.039 

SJR 0.001 0.001 0.001 0.001 0.001 0.000 

MTZ 0.004 0.003 0.007 0.016 0.005 0.002 

Yolo 0.001 0.001 0.001 0.011 0.003 0.003 

SAC 0.402 0.402 0.402 0.402 0.402 0.402 

Old River Tracy  CAL 0.300 0.300 0.300 0.300 0.300 0.300 

MOK 0.356 0.356 0.356 0.356 0.356 0.356 

SJR 0.333 0.333 0.333 0.333 0.333 0.333 

MTZ 0.307 0.307 0.307 0.307 0.307 0.307 

Yolo 0.300 0.300 0.300 0.300 0.300 0.300 

SAC 0.012 0.013 0.028 0.023 0.012 0.009 

Old River @ HWY4 CAL 0.039 0.032 0.010 0.029 0.120 0.089 

MOK 0.003 0.006 0.009 0.008 0.004 0.004 

SJR 0.037 0.029 0.084 0.034 0.027 0.024 

MTZ 0.187 0.331 0.145 0.270 0.343 0.212 

Yolo 0.329 0.329 0.329 0.329 0.329 0.329 

SAC 0.554 0.554 0.554 0.554 0.554 0.554 

Old River @ Bacon  CAL 0.352 0.352 0.352 0.352 0.352 0.352 

MOK 0.344 0.344 0.344 0.344 0.344 0.344 

SJR 0.211 0.211 0.211 0.211 0.211 0.211 

MTZ 0.119 0.119 0.119 0.119 0.119 0.119 

Yolo 0.076 0.101 0.105 0.064 0.069 0.053 

SAC 0.038 0.021 0.016 0.013 0.056 0.040 

Middle River @ Union 
Island 

CAL 0.006 0.000 0.002 0.007 0.012 0.013 

MOK 0.001 0.005 0.014 0.010 0.007 0.006 
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Station Source %V1 %V2 %V3 %V4 %V5 %V6 

SJR 1.619 2.288 2.043 1.356 1.806 1.269 

MTZ 0.000 0.000 0.000 0.002 0.002 0.001 

Yolo 0.000 0.000 0.001 0.000 0.000 0.000 

SAC 0.053 0.013 0.049 0.046 0.082 0.177 

Middle River @ Holt CAL 0.003 0.004 0.007 0.006 0.002 0.004 

MOK 0.021 0.022 0.042 0.024 0.014 0.015 

SJR 0.419 0.362 0.560 0.683 0.515 0.488 

MTZ 0.290 0.290 0.290 0.290 0.290 0.290 

Yolo 0.643 0.643 0.643 0.643 0.643 0.643 

SAC 0.417 0.417 0.417 0.417 0.417 0.417 

Middle River @ Victoria CAL 0.204 0.204 0.204 0.204 0.204 0.204 

MOK 0.193 0.193 0.193 0.193 0.193 0.193 

SJR 0.268 0.268 0.268 0.268 0.268 0.268 

MTZ 0.036 0.059 0.097 0.052 0.040 0.039 

Yolo 0.035 0.027 0.009 0.010 0.074 0.032 

SAC 0.002 0.002 0.004 0.003 0.001 0.003 

Jones Pumping CAL 0.014 0.013 0.020 0.014 0.007 0.010 

MOK 1.515 1.827 1.821 1.547 1.483 1.350 

SJR 0.211 0.211 0.211 0.211 0.211 0.211 

MTZ 0.217 0.217 0.217 0.217 0.217 0.217 

Yolo 0.191 0.191 0.191 0.191 0.191 0.191 

SAC 0.136 0.136 0.136 0.136 0.136 0.136 

CCF Intake  CAL 0.128 0.128 0.128 0.128 0.128 0.128 

MOK 0.170 0.170 0.170 0.170 0.170 0.170 

SJR 0.024 0.045 0.040 0.022 0.020 0.038 

MTZ 0.011 0.011 -
0.009 0.007 0.029 0.075 

Yolo 0.029 0.019 0.011 0.019 0.016 0.016 

SAC 0.006 0.031 0.045 0.025 0.035 0.017 

Antioch  CAL 0.007 0.004 0.006 0.007 0.006 0.003 

MOK 0.388 0.388 0.388 0.388 0.388 0.388 

SJR 0.182 0.182 0.182 0.182 0.182 0.182 

MTZ 0.098 0.098 0.098 0.098 0.098 0.098 

Yolo 0.161 0.161 0.161 0.161 0.161 0.161 

SAC 0.124 0.124 0.124 0.124 0.124 0.124 

CAL: Calaveras River; MOK: Mokelumne River; SJR: San Joaquin River; MTZ: Martinez; Yolo: Yolo Bypass; 
SAC: Sacramento River. %V1-V6: volumetric contributions from six time periods (i.e., months of January and 
July, months of February and August, months of March and September and so on).  
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Tetra Tech, Inc. Results 

 
 

 
Figure 3-1 DSM2 simulated and ANN fitted volumetric contribution at CCF  
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Results Tetra Tech, Inc. 

 
 

 
Figure 3-2 DSM2 simulated and ANN fitted volumetric contribution at Antioch 
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Tetra Tech, Inc. Results 

 
Figure 3-3 DSM2 simulated and ANN fitted volumetric contributions from Calaveras River to CCF 

(09/1996-03/1999) 
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Results Tetra Tech, Inc. 

 
Figure 3-4 DSM2 simulated and ANN fitted volumetric contributions from Mokelumne River to CCF 

(09/1996-03/1999) 
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Figure 3-5 DSM2 simulated and ANN fitted volumetric contributions from Martinez to CCF (09/1996-

03/1999) 
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Figure 3-6 DSM2 simulated and ANN fitted volumetric contributions from Sacramento River to CCF 

(09/1996-03/1999) 
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Figure 3-7 DSM2 simulated and ANN fitted volumetric contribution from San Joaquin River to CCF 

(09/1996-03/1999) 
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Figure 3-8 DSM2 simulated and ANN fitted volumetric contribution from Yolo Bypass to CCF 

(09/1996-03/1999) 
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Figure 3-9 DSM2 simulated and ANN fitted volumetric contribution from Calaveras River to Antioch 

(09/1996-03/1999) 
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Figure 3-10 DSM2 simulated and ANN fitted volumetric contribution from Mokelumne River to Antioch 

(09/1996-03/1999) 
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Figure 3-11 DSM2 simulated and ANN fitted volumetric contribution from Martinez to Antioch 

(09/1996-03/1999) 
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Figure 3-12 DSM2 simulated and ANN fitted volumetric contribution from Sacramento River to 

Antioch (09/1996-03/1999) 
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Figure 3-13 DSM2 simulated and ANN fitted volumetric contribution from San Joaquin River to 

Antioch (09/1996-03/1999) 
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Figure 3-14 DSM2 simulated and ANN fitted volumetric contribution from Yolo Bypass to Antioch 

(09/1996-03/1999) 

 

3.4 ANN APPLICATION RESULTS  
The trained ANN results were applied to simulate EC at different locations within the 
Delta, and the results were compared to EC derived from the DSM2 simulated volumetric 
contribution using the same calculation method (Table 3-5). For each location, the ANN-
estimated and DSM2-simulated volumetric contribution from each source, along with EC 
concentrations at source locations were used to calculate EC at predicted locations within 
the Delta. EC concentrations were calculated as the sum of the products of volumetric 
contributions and boundary concentrations (including lagged terms) as defined in 
Chapter 1.  

The EC estimated from the ANN and DSM2 simulated volumetric contribution was 
compared. The results suggest good agreement between EC estimated from ANN and 
DSM2 estimated volumetric contribution, which is expected given the quality of the 
volumetric fingerprint fits presented in the prior section. Scatter plots of ANN- and DSM2-
estimated EC are shown in Appendix D. EC concentrations at boundaries used in the 
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calculations are derived from DSM2 model inputs. Similar to DSM2, EC concentrations 
assigned to three EC DICU regions were used as inputs. As in DSM2, EC concentrations 
from east side tributaries were assigned at constant of 125 µS/cm.  

A similar application was conducted for bromide (Br) and dissolved organic carbon (DOC). 
Similarly good agreement between ANN and DSM2 simulated concentrations (of Br and 
DOC) were found (Table 3-6 and Table 3-7).  

Table 3-5  
Comparison of EC estimated from volumetric contribution simulated by ANN and DSM2 

Location DSM2 Channel Name Slope Intercept r 

SJR @HWY4 RSAN008 0.94 110 0.976 

SJR @ Jersey Point  RSAN018 0.95 44 0.972 

SJR @ Prisoner's Point  RSAN037 0.91 42 0.977 

Emmaton  RSAC092 0.98 54 0.978 

Rio Vista RSAC101 0.90 25 0.962 

Collinsville  RSAC081 0.94 280 0.971 

Mallard/Chipps  RSAC075 0.93 530 0.975 

Port Chicago  RSAC064 0.89 1300 0.972 

Old River Tracy  Rold059 0.85 98 0.963 

Old River @ HWY4 Rold034 0.87 79 0.947 

Old River @ Bacon  Rold024 0.92 47 0.956 

Middle River @ Union Island Rmid041 0.9 62 0.978 

Middle River @ Holt  Rmid005 0.89 61 0.966 

Middle River @ Victoria Rmid027 0.9 65 0.958 

Jones Pumping  Chdmc004 0.93 33 0.977 

CCF Intake  CHSWP003 0.92 51 0.962 

Antioch RSAN007 0.94 160 0.976 
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Table 3-6  
Comparison of Br estimated from volumetric contribution simulated by ANN and DSM2 

Location  DSM2 Channel Name  Slope  Intercept  r  

SJR @HWY4 RSAN008 0.94 0.11 0.976 

SJR @ Jersey Point  RSAN018 0.95 0.04 0.972 

SJR @ Prisoner's Point  RSAN037 0.90 0.02 0.969 

Emmaton  RSAC092 0.98 0.06 0.978 

Rio Vista RSAC101 0.88 0.01 0.949 

Collinsville  RSAC081 0.94 0.32 0.971 

Mallard/Chipps  RSAC075 0.93 0.60 0.975 

Port Chicago  RSAC064 0.89 1.5 0.972 

Old River Tracy  Rold059 0.79 0.049 0.924 

Old River @ HWY4 Rold034 0.80 0.048 0.928 

Old River @ Bacon  Rold024 0.91 0.027 0.947 

Middle River @ Union Island Rmid041 0.89 0.026 0.973 

Middle River @ Holt  Rmid005 0.82 0.034 0.922 

Middle River @ Victoria Rmid027 0.85 0.033 0.941 

Jones Pumping  Chdmc004 0.93 0.017 0.971 

CCF Intake  CHSWP003 0.88 0.025 0.961 

Antioch RSAN007 0.94 0.17 0.976 
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Table 3-7  
Comparison of DOC estimated from volumetric contribution simulated by ANN and DSM2 

Location DSM2 Channel Name Slope Intercept r 

SJR @HWY4 RSAN008 0.96 0.15 0.991 

SJR @ Jersey Point  RSAN018 0.95 0.17 0.991 

SJR @ Prisoner's Point  RSAN037 0.92 0.35 0.978 

Emmaton  RSAC092 0.96 0.10 0.996 

Rio Vista RSAC101 0.97 0.07 0.997 

Collinsville  RSAC081 0.96 0.11 0.991 

Mallard/Chipps  RSAC075 0.94 0.13 0.986 

Port Chicago  RSAC064 0.83 0.26 0.966 

Old River Tracy  Rold059 0.79 0.94 0.942 

Old River @ HWY4 Rold034 0.86 0.55 0.956 

Old River @ Bacon  Rold024 0.91 0.39 0.967 

Middle River @ Union Island Rmid041 0.85 0.55 0.965 

Middle River @ Holt  Rmid005 0.88 0.55 0.973 

Middle River @ Victoria Rmid027 0.84 0.57 0.954 

Jones Pumping  Chdmc004 0.90 0.39 0.978 

CCF Intake  CHSWP003 0.87 0.51 0.969 

Antioch RSAN007 0.95 0.15 0.992 
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4 SUMMARY 

The volumetric fingerprint approach in the DSM2 model allows an evaluation of the 
contribution of different inflows to any location in the Delta. Using this information, and 
knowledge of inflow concentrations, one can determine the chemical concentration at any 
location using a matrix multiplication, and without the need to re-run DSM2. This basic 
concept was applied in this work, with the use of ANNs to emulate DSM2. 

ANN models were developed to predict volumetric contributions from six major boundary 
sources and nine DICU regions to 17 pre-specified locations within Delta. The DSM2 
model was first applied under the fingerprinting mode to simulate volumetric contributions 
from the six boundaries and nine DICU regions for a set of 10 scenarios with variable input 
conditions. The DSM2 simulation results provided the data set that was used to train the 
ANN models. Because of the complexity of the response, a large number of ANNs were 
needed to accomplish this task. For each location, separate ANN models were developed 
to simulate the volumetric contribution from the Sacramento, San Joaquin, Calaveras, 
Mokelumne+Cosumnes Rivers, Yolo Bypass, Martinez and agricultural regions. We 
trained the ANNs for each of the six tracers for Sacramento River at Freeport volume 
percent (6 separate ANNs), DICU flow volume percent (9 separate ANNs), Vernalis 
volume percent (1 ANN), Calaveras volume percent (1 ANN), Mokelumne+Cosumnes 
volume percent (1 ANN), Yolo volume percent (1 ANN), Martinez volume percent 
(1 ANN). This formed a total of 20 ANNs for each output location, or 20x17 (340) ANNs 
for the entire exercise. An interface was developed that provides wrapper around the 
individual ANNs such that a user does not need to deal with the specifics of the ANN to 
be used for a particular application. 

The training results generally suggested very good agreement between the DSM2 and 
ANN-predicted volumetric contribution, with a correlation coefficient of generally above 
0.85. Better fits was found for Sacramento River and San Joaquin River tributary locations 
than central Delta locations.  

The simulated volumetric contribution from the ANN models, in conjunction with 
concentrations at the boundary, can be used to predict concentrations of any conservative 
constituent for the 17 trained locations within Delta.  

In the application of the trained ANN models, the ANN- and DSM2-simulated volumetric 
contribution from different boundaries and DICU regions, along with EC concentrations at 

State Water Project Contractors Authority 
August 2015  4-1 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



Summary Tetra Tech, Inc. 

these sources, were used to predict EC at trained locations. The results from the ANN and 
DSM2 models were compared and showed good agreement (with correlation coefficient 
of > 0.9). Similar comparisons showed good results for Br and DOC, strongly supportive 
of the concept of using a DSM2 emulator for modeling conservative constituents in a 
manner that runs faster and with less specialized skill than required for operating the full 
DSM2 model. It is envisioned that this approach will find use among a broader community 
of users who want to explore the effects of individual boundary sources on specific 
locations, to understand relationships under varying conditions, and also to pre-screen 
scenarios before embarking on full-fledged DSM2 runs.
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APPENDIX A 
DSM2 SIMULATED VOLMETRIC CONTRIBUTION 
FROM BOUNDARY SOURCES TO CLIFTON 
COURT FOREBAY (CHSWP003) 
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a) Contribution from Calaveras River  
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b) Contribution from Mokelumne River  
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c) Contribution from Martinez 
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d) Contribution from Sacramento River  
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e) Contribution from San Joaquin River  
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f) Contribution from Yolo Bypass  
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g) Contribution from DICU region 1  
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h) Contribution from DICU region 2  
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i) Contribution from DICU region 3 
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j) Contribution from DICU region 4 
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k) Contribution from DICU region 5 
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l) Contribution from DICU region 6 
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m) Contribution from DICU region 7 
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n) Contribution from DICU region 8 
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o) Contribution from DICU region 9 

Figure A-1 DSM2 simulate contribution to CHSWP (CCF) from: a) Calaveras River; b) Mokelumne River; c) Martinez; d) Sacramento River; 
e) San Joaquin River; f) Yolo Bypass, g) DICU region 1, h) DICU region 2, i) DICU region 3, j) DICU region 4, k) DICU region 5, 
l) DICU region 6, m) DICU region 7, n) DICU region 8, and o) DICU region 9 at six time steps. 
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APPENDIX B 
VALIDATION OF DSM2 FINGER PRINTING 
RESULTS VS DSM2 SIMULATED EC 
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Figure B-1 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at CCF Intake (Banks Pumping Plant) (daily results)  
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Figure B-2 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at CCF Intake (Banks Pumping Plant) (monthly results)  
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Figure B-3 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at Jones Pumping Plant (daily results)  
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Figure B-4 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at Jones Pumping Plant (monthly results)  
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Figure B-5 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at Old River Bacon (daily results)  
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Figure B-6 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at Old River Bacon (monthly results)  
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Figure B-7 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at Sacramento River at Mallard Island (daily results)  
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Figure B-8 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at Sacramento River at Mallard Island (monthly results)  
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Figure B-9 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at San Joaquin River at Highway 4 (daily results)  
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Figure B-10 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at San Joaquin River at Highway 4 (monthly results)  
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Figure B-11 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at San Joaquin River at Jersey Point (daily results)  
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Figure B-12 Validation of EC estimated from DSM2 finger printing results against DSM2 simulated EC 

at San Joaquin River at Jersey Point (monthly results)   
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APPENDIX C 
COMPARISON OF ANN AND DSM2 SIMULATED 
VOLUMETRIC CONTRIBUTION AT TWO EXAMPLE 
LOCATIONS (CCF AND ANTIOCH) 

This appendix presents time series and scatterplot comparisons of DSM2 results and ANN output 
for two of the 17 locations for which we developed ANNs. Results are shown for DSM2 Run 1 
(identified in Table 2-5 in the main document). ANN outputs are presented as-is, with some 
incidences of negative predictions where the actual DSM2-computed value is near zero. 
Negative values of volumetric contribution are not physically plausible and in the application of 
the fingerprint model, all negative outputs are replaced with a zero value.  
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Figure C-1 ANN vs. DSM2 simulated time series of volumetric contribution from Calaveras River to CHSWP003 (CCF) for different time steps  
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Figure C-2 ANN vs. DSM2 simulated volumetric contribution from Calaveras River to CHSWP003 (CCF) at different time steps  
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Figure C-3 ANN vs. DSM2 simulated volumetric contribution from Calaveras River to CHSWP003 (CCF)  
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Figure C-4 ANN vs. DSM2 simulated time series of volumetric contribution from Mokelumne River to CHSWP003 (CCF) at different time 

steps  
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Figure C-5 ANN vs. DSM2 simulated volumetric contribution from Mokelumne River to CHSWP003 (CCF) at different time steps  
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Figure C-6 ANN vs. DSM2 simulated volumetric contribution from Mokelumne River to CHSWP003 (CCF)  
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Figure C-7 ANN vs. DSM2 simulated time series of volumetric contribution from Sacramento River to CHSWP003 (CCF) at different time 

steps  

  State Water Project Contractors Authority 
C-8  August 2015 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



Tetra Tech, Inc. Appendix C 

 
Figure C-8 ANN vs. DSM2 simulated volumetric contribution from Sacramento River to CHSWP003 (CCF) at different time steps  
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Figure C-9 ANN vs. DSM2 simulated volumetric contribution from Sacramento River to CHSWP003 (CCF) 
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Figure C-10 ANN vs. DSM2 simulated time series of volumetric contribution from San Joaquin River to CHSWP003 (CCF) at different time 

steps  
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Figure C-11 ANN vs. DSM2 simulated volumetric contribution from San Joaquin River to CHSWP003 (CCF) at different time steps  
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Figure C-12 ANN vs. DSM2 simulated volumetric contribution from San Joaquin River to CHSWP003 (CCF) 
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Figure C-13 ANN vs. DSM2 simulated time series of volumetric contribution from Martinez to CHSWP003 (CCF) at different time steps  
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Figure C-14 ANN vs. DSM2 simulated volumetric contribution from Martinez to CHSWP003 (CCF) at different time steps  
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Figure C-15 ANN vs. DSM2 simulated volumetric contribution from Martinez to CHSWP003 (CCF) 
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Figure C-16 ANN vs. DSM2 simulated time series of volumetric contribution from Yolo to CHSWP003 (CCF) at different time steps  
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Figure C-17 ANN vs. DSM2 simulated volumetric contribution from Yolo to CHSWP003 (CCF) at different time steps  
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Figure C-18 ANN vs. DSM2 simulated volumetric contribution from Yolo to CHSWP003 (CCF) 
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Figure C-19 ANN vs. DSM2 simulated time series of volumetric contribution from Calaveras River to RSAN007 (Antioch) at different time steps  
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Figure C-20 ANN vs. DSM2 simulated volumetric contribution from Calaveras River to RSAN007 (Antioch) at different time steps  
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Figure C-21 ANN vs. DSM2 simulated volumetric contribution from Calaveras River to RSAN007 (Antioch)  
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Figure C-22 ANN vs. DSM2 simulated time series of volumetric contribution from Mokelumne River to RSAN007 (Antioch) at different time 

steps  
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Figure C-23 ANN vs. DSM2 simulated volumetric contribution from Mokelumne River to RSAN007 (Antioch) at different time steps  

  State Water Project Contractors Authority 
C-24  August 2015 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



Tetra Tech, Inc. Appendix C 

 

Figure C-24 ANN vs. DSM2 simulated volumetric contribution from Mokelumne River to RSAN007 (Antioch)  
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Figure C-25 ANN vs. DSM2 simulated time series of volumetric contribution from Sacramento River to RSAN007 (Antioch) at different time 

steps  
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Figure C-26 ANN vs. DSM2 simulated volumetric contribution from Sacramento River to RSAN007 (Antioch) at different time steps  
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Figure C-27 ANN vs. DSM2 simulated volumetric contribution from Sacramento River to RSAN007 (Antioch)  
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Figure C-28 ANN vs. DSM2 simulated time series of volumetric contribution from San Joaquin River to RSAN007 (Antioch) at different time 

steps  
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Figure C-29 ANN vs. DSM2 simulated volumetric contribution from San Joaquin River to RSAN007 (Antioch) at different time steps  
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Figure C-30 ANN vs. DSM2 simulated volumetric contribution from San Joaquin River to RSAN007 (Antioch)  
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Figure C-31 ANN vs. DSM2 simulated time series of volumetric contribution from Martinez to RSAN007 (Antioch) at different time steps  
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Figure C-32 ANN vs. DSM2 simulated volumetric contribution from Martinez to RSAN007 (Antioch) at different time steps  
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Figure C-33 ANN vs. DSM2 simulated volumetric contribution from Martinez to RSAN007 (Antioch)  
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Figure C-34 ANN vs. DSM2 simulated time series of volumetric contribution from Yolo to RSAN007 (Antioch) at different time steps  
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Figure C-35 ANN vs. DSM2 simulated volumetric contribution from Yolo to RSAN007 (Antioch) at different time steps  
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Figure C-36 ANN vs. DSM2 simulated volumetric contribution from Yolo to RSAN007 (Antioch)  
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APPENDIX D 
COMPARISON OF EC, BR, AND DOC 
ESTIMATED FROM ANN AND DSM2 SIMULATED 
VOLUMETRIC CONTRIBUTION  

State Water Project Contractors Authority 
August 2015  D-1 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



Appendix D  Tetra Tech, Inc. 

 

 
Figure D-1 ANN vs. DSM2 simulated EC at SJR @ HWY4 (RSAN008) 
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Figure D-2 ANN vs. DSM2 simulated EC at SJR @ Jersey Point (RSAN018) 
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Figure D-3 ANN vs. DSM2 simulated EC at SJR @ Prisoner’s Point (RSAN037).  
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Figure D-4 ANN vs. DSM2 simulated EC at Emmaton (RSAC092).  
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Figure D-5 ANN vs. DSM2 simulated EC at Rio Vista (RSAC101).  
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Figure D-6 ANN vs. DSM2 simulated EC at Collinsville (RSAC081).  
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Figure D-7 ANN vs. DSM2 simulated EC at Mallard (RSAC075).  
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Figure D-8 ANN vs. DSM2 simulated EC at Port Chicago (RSAC064).  
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Figure D-9 ANN vs. DSM2 simulated EC at Old River Tracy (Rold059).  
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Figure D-10 ANN vs. DSM2 simulated EC at Old River @ HWY4 (Rold034).  
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Figure D-11 ANN vs. DSM2 simulated EC at Old River @ Bacon (Rold024).  
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Figure D-12 ANN vs. DSM2 simulated EC at Middle River @ Holt (Rmid005).  
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Figure D-13 ANN vs. DSM2 simulated EC at Middle River @ Union Island (Rmid041).  
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Figure D-14 ANN vs. DSM2 simulated EC at Middle River at Victoria Canal  
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Figure D-15 ANN vs. DSM2 simulated EC at Jones Pumping  
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Figure D-16 ANN vs. DSM2 simulated EC at CCF Intake (CHSWP003).  
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Figure D-17 ANN vs. DSM2 simulated EC at Antioch (RSAN007).   
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Figure D-18 ANN vs. DSM2 simulated Br at SJR @ HWY4 (RSAN008) 
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Figure D-19 ANN vs. DSM2 simulated Br at SJR @ Jersey Point (RSAN018) 
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Figure D-20 ANN vs. DSM2 simulated Br at SJR @ Prisoner’s Point (RSAN037).  
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Figure D-21 ANN vs. DSM2 simulated Br at Emmaton (RSAC092).  

  State Water Project Contractors Authority 
D-22  August 2015 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



Tetra Tech, Inc. Appendix D 

 
Figure D-22 ANN vs. DSM2 simulated Br at Rio Vista (RSAC101).  
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Figure D-23 ANN vs. DSM2 simulated Br at Collinsville (RSAC081).  
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Figure D-24 ANN vs. DSM2 simulated Br at Mallard (RSAC075).  
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Figure D-25 ANN vs. DSM2 simulated Br at Port Chicago (RSAC064).  
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Figure D-26 ANN vs. DSM2 simulated Br at Old River Tracy (Rold059).  
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Figure D-27 ANN vs. DSM2 simulated Br at Old River @ HWY4 (Rold034).  
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Figure D-28 ANN vs. DSM2 simulated Br at Old River @ Bacon (Rold024).  
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Figure D-29 ANN vs. DSM2 simulated Br at Middle River @ Holt (Rmid005).  
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Figure D-30 ANN vs. DSM2 simulated Br at Middle River @ Union Island (Rmid041).  
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Figure D-31 ANN vs. DSM2 simulated Br at Middle River at Victoria Canal  
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Figure D-32 ANN vs. DSM2 simulated Br at Jones Pumping  

State Water Project Contractors Authority 
August 2015  D-33 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



Appendix D Tetra Tech, Inc. 

 
Figure D-33 ANN vs. DSM2 simulated Br at CCF Intake (CHSWP003).  
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Figure D-34 ANN vs. DSM2 simulated Br at Antioch (RSAN007).   
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Figure D-35 ANN vs. DSM2 simulated DOC at SJR @ HWY4 (RSAN008) 
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Figure D-36 ANN vs. DSM2 simulated DOC at SJR @ Jersey Point (RSAN018) 
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Figure D-37 ANN vs. DSM2 simulated DOC at SJR @ Prisoner’s Point (RSAN037).  
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Figure D-38 ANN vs. DSM2 simulated DOC at Emmaton (RSAC092).  
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Figure D-39 ANN vs. DSM2 simulated DOC at Rio Vista (RSAC101).  
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Figure D-40 ANN vs. DSM2 simulated DOC at Collinsville (RSAC081).  
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Figure D-41 ANN vs. DSM2 simulated DOC at Mallard (RSAC075).  
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Figure D-42 ANN vs. DSM2 simulated DOC at Port Chicago (RSAC064).  
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Figure D-43 ANN vs. DSM2 simulated DOC at Old River Tracy (Rold059).  
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Figure D-44 ANN vs. DSM2 simulated DOC at Old River @ HWY4 (Rold034).  
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Figure D-45 ANN vs. DSM2 simulated DOC at Old River @ Bacon (Rold024).  
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Figure D-46 ANN vs. DSM2 simulated DOC at Middle River @ Holt (Rmid005).  
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Figure D-47 ANN vs. DSM2 simulated DOC at Middle River @ Union Island (Rmid041).  
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Figure D-48 ANN vs. DSM2 simulated DOC at Middle River at Victoria Canal  

State Water Project Contractors Authority 
August 2015  D-49 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 



Appendix D Tetra Tech, Inc. 

 
Figure D-49 ANN vs. DSM2 simulated DOC at Jones Pumping  
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Figure D-50 ANN vs. DSM2 simulated DOC at CCF Intake (CHSWP003).  
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Figure D-51 ANN vs. DSM2 simulated DOC at Antioch (RSAN007).   

 

  State Water Project Contractors Authority 
D-52  August 2015 
 Generalized Delta Conservative Constituent Modeling using Artificial Neural Networks 


	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Acronyms
	Executive Summary
	1 Introduction
	2 Approach
	2.1 Overall Approach
	2.2 DSM2 Fingerprinting Runs
	2.2.1 DSM2 Model and Fingerprinting Methodology
	2.2.2 Number of Tracers Used
	2.2.3 -Definition of Nine DICU Regions
	2.2.4 DSM2 Scenarios

	2.3 Artificial Neural Networks
	2.3.1 Model Inputs
	2.3.2 ANN Output Locations
	2.3.3 ANN Model Structure
	2.3.4 Training Technique and Dataset Division

	2.4 Proposed Application

	3 Results
	3.1 DSM2 Simulated Volumetric Contribution at Target Locations
	3.2 Preliminary Validation Results
	3.3 Ann Training Results
	3.4 ANN Application Results

	4 Summary
	5 References
	Appendices
	Appendix A DSM2 Simulated Volmetric Contribution from Boundary Sources to Clifton Court Forebay (CHSWP003)
	Appendix B Validation of DSM2 Finger Printing Results vs DSM2 Simulated EC
	Appendix C Comparison of ANN and DSM2 Simulated Volumetric Contribution at Two Example Locations (CCF and Antioch)
	Appendix D Comparison of EC, Br, and DOC Estimated from ANN and DSM2 Simulated Volumetric Contribution




