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Morphogenesis of flow and form
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Rescaling means reshaping channels and
floodplains

How much should we
prescribe through
moving dirt and rocks
versus letting the river
“work?




Knowing/assuming a “channel forming” flow, and some extrinsic
reach properties we can calculate stuff
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Dimensionless bankfull width ~B, dimensionless Meander wavelength as a function of channel width for
bankfull depth ~H , and down-channel bed slope S as 438 locations (NEH 654, Ch12)

functions of dimensionless bankfull discharge *Q
(Parker et al., 2007. Physical basis for quasi-universal relations describing
bankfull hydraulic geometry of single-thread gravel bed rivers)
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Rivers shapes are defmed by varlablllty
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Meander spectrum for s_ection of the equations are mOHOChromatic!
(Speight, 1965 MEANDER SPECTRA but real rivers are not

OF THE ANGABUNGA RIVER)



Rivers shapes are defined by variability
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Rivers shapes are defined by variability
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Autocorrelation of joint bed and width oscillations for
LYR Timbuctoo Bend

Width and depth covary
and oscillate quasi-periodically, structured = W:aQO'S
at several scales at channel forming flows

Brown, R. A. and Pasternack, G. B.: Bed and width oscillations form coherent patterns in a partially confined, regulated gravel—
cobble-bedded river adjusting to anthropogenic disturbances, Earth Surf. Dynam., 5, 1-20, doi:10.5194/esurf-5-1-2017, 2017.



Channel rescaling is simple,
but not for floodplalns

« Space for a channel is
preserved through flood
control, so infilling is typical to
the extent that it does not
raise base flood elevations

« Several factors make it difficult 5%
to restore floodplains

Undammed

*Rivers have incised
*Flows are reduced
| evees

*Former floodplains now
have other uses




Anthropocene floodplains in space

Local
widening

Yolo bypass (sacseg)

Confined Partly confined valley setting Laterally unconfined
valley setting / \ valley setting

Discontinuous floodplains Continuous floodplains

Floodplain Initiation
Point

Transitions between valley settings ~ Frvirs & Brierley. 2013



Designing and optimizing water and floodplains for
fish habitat
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Beyond habitat suitability to populations

« See talk by Travis M.
Hinkelman, Ph.D.

Emigrating Salmonid Habitat Estimation
(ESHE): A Modeling Framework for
Estimating Habitat Needs for Outmigrating
Juvenile Salmonids

Habitat capacity
= Available suitable
habitat

Floodplain Inundation
Potential (FIP)

Il <Base Flow
50% Chance FIP
10% Chance FIP
<10% Chance FIP

‘ Modeling Extent

territory size

CVFPP Conservation, DWR 2016



When can a river heal itself?

"HARDENED ENGINEERING TO )
PROTECT INFRASTRUCTURE

(ESPACE DE LIBERTE or Erodible Corridor

» where flow dynamic and sediment load intact
(or nearlyso) can set aside a corridor for flooding
and for the active channel to erode, deposit and migrate

« high potential for self-restoration

on steep reaches

p
WHITEWATER PARKS

* in-stream, engineered recreational
features may be suitable

J N

« impervious catchment causes
higher flood peaks, induces
incision and widening in
unprotected channels

* biotechnical approaches
probably ineffective

+ opportunities to provide amenities
along urban streams (open space,
trails, recreation, woodlands,
limited habitat)
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(ANTICIPATORY MANAGEMENT )
« identify hotspots of likely
erosion to setback infrastructure

.

(FLOW + SEDIMENT
RESTORATION

« flow regulation + sediment trapping
by upstream dams shift
channel dynamics downard

* restoring high flows + sediment
can increase potential for
self-restoration

)

P
“GARDENING”
URBAN RIVER RESTORATION

* removing barriers

» planting riparian vegetation

* removing invasive plant species

* high potential for social benefit
of trails, parks, recreation

) (CHANNEL RECONSTRUCTION

« river may be slow to self-heal
* reconstruction and habitat structures may be justified

<+«— ENCROACHMENT OF DEVELOPMENT IN RIVER CORRIDOR FLOODPLAIN ——»

Kondolf et al. SETTING GOALS IN RIVER RESTORATION




Hitting reset

Roblnson Reach of the Merced River
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Merced River Ranch
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Merced River Ranch
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How much to prescribe through design
~ Versus |ett| ir“ |tS thina”?

f Merced River Ranch 20T L ki O L : Legend

One foot design contours
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] 2016 GE imagery and design contours
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*Simple shapes evolve into fluvial forms with flow
*Increased stabilization of bars from vegetation growth during drought




River islands as rearing habitat




Merced River Henderson Park
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Merced River Henderson Park
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Merced River Henderson Park
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Initially flat floodplain with proto channels
now evolving with flow, sediment and =
biogeomorphic feedbacks Monitoring is ongoing




Natural morphogenesis on Putah Creek

'
Island and pomt bar evolutlon on Putah Creek
break up overS|zed bathtub sectlons

Deposition during floods in winter, Initial island appears to be setting up
colonization during summer meandering



Natural morphogenesis on the Stanislaus River

Flow splits help sort sediment



Looking forward...with eyes wide open

Process Interpreting
History FOums System Memory

DYNAMIC EQUILIBRIUM
P1 Simple process-form relationship;

5 ~ relatively stable; often assumed.

EQUIFINALITY
Pl T—— Two or more processes could

explain observed form.

>
—

P2 —

POLYGENETIC Two or more processes actin
Pl —= P2 _)~ sequence. Earlier processes may
not be known.

INHERITANCE Change in process but no change

P1 ,,~ P2 ,,~ in form. Form does not reflect

modern processes.

THRESHOLDS

Steady Process Unchanging processes generate
a sudden change in form when

~ ~ ° stability is exceeded.

LAG TIME
P1 P2 delay  Change in process with no initial

~ ° change in form; form responds later.
~ Response may be yet to come.

NON-LINEAR DYNAMIC

One or more processes may have a

RESPONSE number of cutcomes. Hard to
predict outcome or reconstruct
processes.
Process-form dynamics that introduce potential Those who
complexities in the temporal evolution of cannot remember the past are
landforms. Geomorphic systems retain a condemned to repeat it
memory of past processes, but interpreting - George Santayana

process history from form is non-trivial. James.
2015
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