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Why NASA?  Why satellites?
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Chesapeake Bay Program 

http://www.chesapeakebay.net

routine data collection since 1984
12-16 cruises / year

49 stations
19 hydrographic measurements

algal biomass
water clarity
dissolved oxygen 1-day of MODIS-Aqua

satellites complement in situ sampling with routine, synoptic, & consistent views of our critical marine ecosystems



This talk focuses on polar orbiting satellites
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What is ocean color?
Challenges!
Applied sciences examples
Demystifying the use of ocean color



Chapter 1:  What is “ocean color”?
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the spectral distribution of reflected sunlight can be used to infer the contents of the water

clear water sediment-rich water

R
rs

(l
)

color
Spectral Wavelength (l)

W
at

er
 R

ef
le

ct
an

ce



NIR
R

O Y
G

B
V/UV

ABSORPTION (a)

SCATTERING (bb)

AIR

SEA

Water-leaving Radiance, Lw

Downwelling Irradiance, Ed

There are two 
possible things that 
can happen to a 
photon in water

Measurements of ocean color are 
based on electromagnetic energy 
emitted by sunlight, transmitted 
through atmosphere, and 
reflected by Earth’s surface.

Phytoplankton

Detritus
Organic Matter
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Ocean color data products
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diffuse light attenuation
(water clarity, turbidity)

particle backscattering 
(sediment load)

chlorophyll-a (algal biomass)

dissolved organic matter 
absorption (runoff)

red light reflectance
(sediment load)
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and, many others, including:
phytoplankton community composition (including HABs)
particle size distributions (water composition)
particulate (in)organic carbon (productivity)
euphotic depth (visibility, water clarity)
water temperature (MODIS, VIIRS)



Applications for water quality monitoring
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Applications for ocean health & fisheries
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http://www.ioccg.org/groups/PFT.html http://ioccg.org/groups/PFT-TM_2015-217528_01-22-15.pdf

https://www.frontiersin.org/research-topics/5253/colour-and-light-in-the-ocean



Heritage & future missions – It’s a consumer’s market
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How to choose?



Different instruments & missions offer different capabilities
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Landsat 8 OLI, 26 Oct 2016,  Queensland, Australia

different algal groups
(spectral bands)

dark ocean compared 
to bright targets

image artifacts

ground sample 
distances

temporal 
repeatability

contamination 
by Sun glint 

atmospheric correction 
(spectral bands + 

instrument performance)



Chapter 2:  Challenges
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Atmospheric correction
Sun glint
Image artifacts
Spectral resolution



Steps for deriving ocean color data products from space
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SEA SURFACE

TOP-OF-THE-ATMOSPHERE

the satellite views the spectral light 
field at the top-of-the-atmosphere

SATELLITE

PHYTOPLANKTON

1. remove atmosphere from total 
signal to derive estimate of light 
field emanating from sea surface 
(remote sensing reflectance, Lw)

2. relate spectral Lw to a 
chlorophyll-a concentration (or  
geophysical product of interest)

3. spatially / temporally 
bin and remap the 
satellite observations

the water signal is often less 
than 10% of the total signal 
measured by the satellite



Steps for deriving ocean color data products from space
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the water signal is often less 
than 10% of the total signal 
measured by the satellite

MODIS image: Libya coast, October 26, 2007



We cannot see “ocean color” through Sun glint

Courtesy NASA Earth Observatory
Ground to Space: A Glittering Path of San Francisco Sunglint

https://earthobservatory.nasa.gov/blogs/earthmatters/2016/11/09/ground-to-space-a-glittering-path-of-san-francisco-sunglint/

What to do?  Tilt the instrument fore/aft.



MODIS-Aqua PAR - June 21, 2007 (without tilt)

SeaWiFS PAR - June 21, 2007 (with tilt)

Orbit 
gaps

High 
sun glint

Orbit 
gaps

High 
sun glint

PAR = PhotosyntheticallyAvailable Radiation (Einstein m
-2d

-1)



Image artifacts & instrument design
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SeaWIFS (rotating telescope)
1 science detector

MERIS (pushbroom)
multiple science detectors

Hu et al. (2012)

All multiple detector 
instruments show 
stripes in ocean color 
imagery (more 
detectors to calibrate)

often smaller science pixels 
(30-300 m)

often larger science pixels 
(1 km)



Spectral resolution
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24PACE KDP-B July 13, 2017
MODIS image: Arabian Sea, March 2, 2017

Different 
algal groups

Challenges
ocean color signals are small 
& differentiating between 
constituents requires 
additional information relative 
to what we have today

Why is moving from multi-band 
radiometry to spectroscopy important?

A metaphor using land plants, which are 
similar to phytoplankton:

Today we can count the leaves, but have 
no idea if we’re looking at a forest, 
orchard, meadow or cropland

With a hyperspectral instrument we will 
finally distinguish between pine needles, 
apple trees, grasses, and corn stalks

All living creatures are tied to their 
food source; if their food disappears 
or moves, so do they & the ecosystem 
in which they live changes accordingly

With heritage multi-spectral satellite 
radiometers we get hints that change 
is happening, but are completely blind 
to what is actually changing!



Spectral resolution
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Particle backscattering retrievals 
improve when using “hyperspectral” 
retrievals compared to using only 
VIIRS wavelengths



Chapter 3:  Applied sciences examples
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Detection of harmful
cyanobacteria blooms

Toledo’s water crib in Lake Erie



Chapter 3:  Applied sciences examples
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Detection of harmful
cyanobacteria blooms

Toledo’s water crib in Lake Erie
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Support environmental management and public use of U.S. lakes by providing a capability of 

detecting and quantifying algal blooms and related water quality using satellite data records.

CyAN Work Packages

Remote sensing • Uniform and systematic approach for identifying cyanobacteria blooms. 

• Strategy for evaluation and refinement of algorithms across platforms.  

Environment • Identify landscape linkages causes of chlorophyll a and cyanobacteria

Health • Exposure and human health effects in drinking and recreational waters.  

Economics • Behavioral responses and economic value of the early warning system. 

Information distribution • Bring the technology to EPA, states and tribal partners. 

• Provide notifications and decision support

Full mission-long MERIS & OLCI (300-m) time-series of cyanobacteria abundance generated 

for ~1,800 resolvable inland continental U.S. lakes



National Water Quality Monitoring Council jeremy.werdell@nasa.gov 29

Monthly temporal assessment of total 

bloom area (km2) for FL, OH, & CA.

Frequency of observed cyanoHAB

occurrence above WHO high 

threshold (100,000 cells mL-1) from 

2008-2011 at the pixel level.
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Chapter 4:  Demystifying the use of satellite ocean color data

https://oceancolor.gsfc.nasa.gov



Further demystifying the use of satellite ocean color data
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Citizen science!
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Thank you!  Questions?

PACE Mission Features

Cost Directed, DTC, $805M
Life 3-yr, Class C, 10-yr fuel
Launch Fall 2022
Orbit 676.5 km, Sun sync, 1-pm MLT AN
Coverage (OCI) 2-day global 
RF Communication Ka direct to ground, 600Mbps

PACE Key Mission Science Requirements

Ground sample distance of 1 ± 0.1 km2 at nadir
Sun glint mitigation (OCI tilt ± 20o)
OCI spectral range from (320) 350-865 nm @ 5 nm resolution
OCI with 940, 1038, 1250, 1378, 1615, 2130, 2260 nm bands
Twice-monthly lunar calibration
Onboard solar calibration (daily, monthly, dim)
A vicarious calibration system
Core data products, uncertainties, & a validation program



Backup



Learn more about PACE

https://pace.gsfc.nasa.gov
@NASAOcean (Twitter)
@NASA.Ocean (Facebook)
Technical Memo. series



PACE mission characteristics
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CY21CY20CY19CY18

Instrument(s)  
CDR(s)

Observatory I&T

CY22 CY23 CY24

Decommission

CY25

Spacecraft
CDR

Launch
Fall 2022

Phase C Phase D Phase EPhase B Phase F

Key Mission Elements

Mission management NASA Goddard SFC
Ocean Color Instrument NASA Goddard SFC
HARP2 polarimeter U. Maryland Baltimore County
SPEXone polarimeter SRON (Netherlands)
Spacecraft/Mission Ops NASA Goddard SFC
Science data processing Ocean Biology Processing Group
Competed science teams NASA Earth Sciences Division

Key Mission Features

Cost Directed, DTC, $805M
Life 3-yr, Class C, 10-yr fuel
Orbit 676.5 km, Sun sync, 1-pm MLT AN
Coverage (OCI) 2-day global 
RF Communication Ka direct to ground, 600Mbps

Key Mission Science Requirements

Ground sample distance of 1 ± 0.1 km2 at nadir
Sun glint mitigation (OCI tilt ± 20o)
OCI spectral range from (320) 350-865 nm @ 5 nm resolution
OCI with 940, 1038, 1250, 1378, 1615, 2130, 2260 nm bands
Twice-monthly lunar calibration
Onboard solar calibration (daily, monthly, dim)
A vicarious calibration system
Core data products, uncertainties, & a validation program


