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We describe a Eulerian–Lagrangian–agent method (ELAM) for mechanistically decoding and forecasting 3-D mov
patterns of individual fish responding to abiotic stimuli. A ELAM model is an individual-based model (IBM) coupling a
Eulerian framework to govern the physical, hydrodynamic, and water quality domains, (2) Lagrangian framework to g
the sensory perception and movement trajectories of individual fish, and (3) agent framework to govern the behavior de
of individuals. The resulting ELAM framework is well suited for describing large-scale patterns in hydrodynamics and
quality as well as the much smaller scales at which individual fish make movement decisions. This ability of ELAM mod
simultaneously handle dynamics at multiple scales allows them to realistically represent fish movements within aquatic s
We introduce ELAMs with an application to aid in the design and operation of fish passage systems in the Pacific Northwes
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Individual virtual fish make behavior decisions about every 2.0 s. These are sub-meter to meter-scale movements based on
hydrodynamic stimuli obtained from a hydraulic model. Movement rules and behavior coefficients are systematically adjusted
until the virtual fish movements approximate the observed fish.

The ELAM model introduced in this paper is called the Numerical Fish Surrogate. It facilitated the development of a mechanistic
biological-based hypothesis describing observed 3-D movement and passage response of downstream migrating juvenile salmon
at 3 hydropower dams on 2 rivers with a total of 20 different structural and operational configurations. The Numerical Fish
Surrogate is presently used by the U.S. Army Corps of Engineers and public utility districts during project planning and design
to forecast juvenile salmon movement and passage response to alternative bypass structures.
Published by Elsevier B.V.
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1. Introduction

Understanding movements of individuals is impor-
tant for understanding population dynamics (Turchin,
1998). Identifying underlying mechanisms that influ-
e
(
t
i
l
m
t
r
c
t

t
i
t
(
T
1
m
n
e
o
b
s
c
n
t
e
b
d

m

available. Advances in telemetry (e.g.,Steig, 1999;
Gerolotto et al., 1999; Johnson et al., 1999; Lucas
and Baras, 2000) can provide high-resolution 3-D
tracks of individual movements. Computational fluid
dynamics (CFD) models can now describe hydro-

and
abil-
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rms
in a
-
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ro-
(2)
nce spatial patterns in populations improves forecasts
Harte, 2002) of alternative management strategies on
he spatial dynamics of populations critical for assess-
ng and managing fisheries (Schmalz et al., 2002; Pel-
etier and Parma, 1994) and improving water resource

anagement (Van Winkle et al., 1993). In many sys-
ems, the spatial pattern of individuals is driven by envi-
onmental factors (Pientka and Parrish, 2002), which
an be evaluated separately from biological interac-
ions (Hussko et al., 1996; Pientka and Parrish, 2002).

The need to understand fish movements is par-

dynamic patterns at scales meaningful to fish,
laboratory studies have defined many sensory
ities of fish to distinguish elements of hydrod
namic fields (e.g.,Coombs et al., 2001; Kröther
et al., 2002). However, mathematical methods lin
ing fish trajectories to hydrodynamic patterns in te
of fish sensory and behavioral elements rema
challenge (Steel et al., 2001). We describe an inte
grated mathematical method that couples a (1) E
rian framework for describing the physical and hyd
dynamic domain of a hydropower dam forebay,
icularly acute in the Columbia–Snake River system
n the Pacific Northwest of the Unites States where
ens of millions of juvenile salmon and steelhead
migrants) migrate downstream through eight dams.
his migration consists of dozens of runs, of which
2 are listed under the Endangered Species Act. Since
igrants passing through turbines may experience sig-
ificant mortality (5–15%) research efforts over sev-
ral decades have been devoted to diverting migrants
ver spillways and through bypass systems. However,
ypass systems have achieved only limited and variable
uccess (Coutant and Whitney, 2000) at considerable
ost.Anderson (1988)first proposed using hydrody-
amic and behavior information to design bypass sys-

h-
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now

Lagrangian framework for describing the sensory per-
ception and movement trajectories of individual fish,
and (3) agent framework for describing the changes
in swimming behavior of individual fish respond-
ing to stimuli. Together these coupled elements com-
prise a Eulerian–Lagrangian–agent method (ELAM)
model to mechanistically decode and forecast move-
ment of downstream outmigrating juvenile salmon
(migrants) as they approach and pass hydropower
dams of the Columbia and Snake Rivers of the Pacific
Northwest.

2. Model overview

2
E

mic
p itical
ems.Anderson (1991)introduced the first such mat
matical model. However, until recently no model
een sufficiently accurate to be of value in enginee
esign of bypasses.

Tools needed to understand and model fish m
ents in response to environmental cues are
.1. Describing hydrodynamic pattern with the
ulerian framework

Understanding migrant responses to hydrodyna
atterns close (<10 m) to a bypass entrance is cr
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to understanding and improving bypass performance
(Johnson et al., 2000). Features of bypass structures
(Fig. 1) have scales of sub-meters to meters. In the
ELAM model for migrants, the Numerical Fish Surro-
gate, the Eulerian framework consists of a mesh made
up of discrete points (nodes) describing the physi-
cal domain of the dam forebay. Hydrodynamic pat-
terns are calculated by a computational fluid dynamics
(CFD) model that solves the Navier–Stokes equations
of fluid motion at discrete points in the Eulerian mesh.
We use the 3-D “Unsteady, Unstructured Reynolds-
Averaged Navier–Stokes” (U2RANS) CFD model (Lai
et al., 2003a,b; Lai, 2000) to describe the hydrody-
namic patterns in the forebays of three hydropower
dams (Fig. 2).

2.2. Describing sensory perception with the
Lagrangian framework

Hydrodynamic information generated at discrete
points in the Eulerian mesh may be interpolated to
locations anywhere within the physical domain where
fish may be. This conversion of information from the
Eulerian mesh to a Lagrangian framework allows the
generation of directional sensory inputs and move-
ments in a reference framework similar to that per-
ceived by real fish. Movement is treated as a two-step
process: first, the fish evaluates agent attributes within
the detection range of its sensory system and, sec-
ond, it executes a response to an agent by moving
(Bian, 2003). The volume from which a fish acquires

F Lower e Bypass
C way We (BGS) is
i e BGS intersection
w
1
o
w

ig. 1. Illustration of two different migrant bypass structures at
ollector (SBC) was deployed. In 2002, the Removable Spill

ntended to guide migrants into the bypass (SBC or RSW). Th

ith the powerhouse and tapers in step-wise manner to a minimum o
.2 m deep. The BGS and trash boom were present for both 2000 an
ccupied the spillbay nearest the powerhouse. In 2002, the SBC was
as removed in lieu of the RSW.
Granite Dam on the Snake River, WA USA. In 2000, the Surfac
ir (RSW) was deployed. The Behavioral Guidance Structure
is a suspended steel wall approximately 24.4 m deep at its
f 16.8 m at its upstream end. The trash boom is approximately a constant
d 2002 field studies.Note: both the SBC (in 2000) and the RSW (in 2002)
not operated and the conduit connecting the dormant SBC to the spillbay
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Fig. 2. Map of the Pacific Northwest USA showing the locations of three hydropower dams with Numerical Fish Surrogate applications: (1)
Lower Granite, (2) Ice Harbor, and (3) Wanapum.

decision-making information is represented as a sen-
sory ovoid (Fig. 3). A virtual fish’s sense of direction
in each time increment is based on its orientation at the
beginning of the time increment. Directional sensory
inputs are tracked relative to the horizontal orientation
of the fish because fish response to laterally-located ver-
sus frontally-located stimuli can be different (Coombs
et al., 2000). The sensory ovoid has a vertical refer-
ence because fish detect accelerations and gravitation
through the otolith of its inner ear (Paxton, 2000). It
also senses three-dimensional information on motion
(Braun and Coombs, 2000). In the Numerical Fish Sur-
rogate, we use a symmetrical (spherical) sensory ovoid
for migrants although it can be either symmetrical or
distorted (Fig. 3) (Goodwin et al., 2001; Nestler et al.,
2002).

The scale of the sensory ovoid represents the sen-
sory range of the fish lateral line mechanosensory
system. Sensory Query Distances (SQDs) character-
ize the range of the sensory ovoid from the fish cen-
troid parallel (SQDx), perpendicular (SQDy), and ver-
tical (SQDz) to the long axis of the fish (Fig. 3). The
detection range of the lateral line mechanosensory sys-
tem and, therefore SQDs, is a function of fish length
(Coombs, 1999). Longer fish are able to detect hydro-
dynamic stimuli from greater distances (Denton and
Gray, 1983, 1988, 1989; Kalmijn, 1988, 1989; Coombs,
1996, 1999). With respect to prey items, the “active
space” of the lateral line system is 1–2 body lengths
but the actual range depends on a number of fac-
tors including size and form of the disturbance source
(Coombs, 1999).
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Fig. 3. Two-dimensional view (longitudinal and vertical) of a virtual fish computational sensory ovoid. The sensory ovoid is independent of the
Eulerian mesh topology. Sensory points that exceed the physical domain, i.e., when the fish is near the domain boundary, may be repositioned
at the boundary or flagged as ‘out-of-bounds’.

The SQD is composed of two metrics: biological
sensory query distance (SQDb) and CFD model sen-
sory query distance (SQDCFD). SQDb is related to
model time increment�t (s), fish body lengthSf (m),
and operating range of the fish sensory system to the
agent in a 1.0-s time incrementDa (body lengths) cal-
culated as:

SQDb = �t · Sf · Da (1)

Resolution of the Eulerian model or field data can
limit the usefulness of SQDb. Frequently, resolution
of mesh-based data is insufficient to calculate gradient
information with significant precision using only a dis-
tance of SQDb. Therefore, a larger distance (SQDCFD)
is required to estimate gradient information. SQDCFD
is based on resolution of the mesh-based data and inter-
polation scheme used. SQDCFD may change based on
the position of the virtual fish in the Eulerian mesh since
some areas are often gridded more densely, i.e., provide
higher resolution of modeled data. SQD is selected for
each fish at every time step as:

SQD= max{SQDb, SQDCFD} (2)

The SQD may be modified to reflect factors such as
fish physiological condition, time of day, water quality,
and whether the fish swims alone or is part of a school.
To capture environmental gradients at multiple spatial

scales, SQD values fluctuate randomly each time incre-
ment according to a user-defined percentage, as sug-
gested byRailsback et al. (1999a)andGoodwin et al.
(2001). In the Numerical Fish Surrogate, the spherical
dimension of the sensory ovoid, SQD, for migrants is
based on a 2.0-s time increment, 0.2 m migrant length,
and a hydrodynamic agent detection range of 2 body
lengths for a 1.0-s time increment. The biological sen-
sory query distance (SQDb) is 0.8 m, but SQDCFD was
determined through trial and error to be approximately
1.25 m. To capture gradients at more than one spatial
scale, SQD fluctuates each separate time increment to
a value between 1.25 m and 150% of 1.25 m (1.875 m).
Larger fluctuations can be used but at the expense of
additional sensory point domain boundary violations.

2.3. Describing movement with the Lagrangian
framework

Movement may be classified by whether incremen-
tal movement length (speed) and direction are inter-
dependent or independent (Wu et al., 2000; Marsh and
Jones, 1988). Behavior rules in the Numerical Fish Sur-
rogate produce a 3-D volitional swimming vector in
which speed and orientation are determined interde-
pendently for each fish at every 2.0-s increment. The
resultant volitional fish swim vector is then decom-
posed into Cartesian vector components (uf , vf , wf )
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Fig. 4. Eulerian mesh discretization of the Lower Granite Dam forebay near the powerhouse structure (Fig. 1). Inset: conceptually dispensing
with the arbitrary Eulerian mesh orientation by defining a supplemental Lagrangian reference frame oriented uniquely for each fish at every time
step.

coinciding with the axes of the Eulerian mesh (Fig. 4).
These vectors are added to the flow vectors (u, v, w)
interpolated to the fish’s location to update the coor-
dinates (xt, yt, zt) at timet from the previous position
(xt−1, yt−1, zt−1) after time increment (�t) as:

xt = xt−1 + (u + uf ) · �t (3)

yt = yt−1 + (v + vf ) · �t (4)

zt = zt−1 + (w + wf ) · �t (5)

Simulating the continuous (Lagrangian) movement
of individuals in a (Eulerian) mesh of discrete points
is difficult and has limited the use of integrated
Eulerian–Lagrangian methods (ELMs) in individual-
based modeling (Bian, 2003). For example, existing
3-D fluid and water quality dynamics models may
use any one of a number of different Eulerian mesh
topologies including multi-block, near-orthogonal
structured, unstructured hexahedral, unstructured
tetrahedral, mixed hexahedral–tetrahedral, or other
mesh topologies using arbitrarily shaped cells (e.g.,Lai
et al., 2003a,b; Lai, 2000). Computationally efficient
simulation of many virtual individuals in large physical
domains, such as a dam forebay, with moderate-to-high
mesh resolution requires sophisticated parallel particle-

tracking algorithms (e.g.,Cheng and Plassmann, 2001,
2002, 2004; Cheng et al., 2004) compatible with
different mesh topologies. These particle-tracking
algorithms must be supplemented with efficient mesh
search and interpolation algorithms (e.g.,Khoshniat
et al., 2003) and bookkeeping schemes before ELMs
can be used in individual-based models (IBMs).

The current form of the Numerical Fish Surro-
gate uses a particle-tracking algorithm compatible with
many mesh topologies. For brevity, we limit our discus-
sion to multi-block, near-orthogonal structured meshes
(Fig. 4). The particle-tracking algorithm for multi-
block, near-orthogonal structured meshes first converts
the mesh discretization of the 3-D physical domain
from Cartesian to contravariant space (Fig. 5). All 3-D
cells are translated to unit size, i.e., 1× 1× 1, and vec-
tor quantities are appropriately scaled. Second-order
interpolation schemes are used to maintain accuracy
in the spatial derivatives of the Eulerian mesh data.
The position of an individual in contravariant space is
tracked by displacement within the cell (i.e., the unit
cube) and the Cartesian position of the reference node
of the cell (Fig. 6). The individual’s position in con-
travariant space efficiently identifies nearest points in
the Eulerian mesh where agent attributes from the CFD
model are available for interpolation.
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Fig. 5. Comparison of a multi-block, near-orthogonal structured mesh (2-D) in original Cartesian space (A) and then in (conceptual) contravariant
space (B). All vector quantities are appropriately scaled in contravariant space to maintain conservation principles.

Variables in Eqs.(3)–(5)are converted from Carte-
sian to contravariant form to update an individual’s
position. Since contravariant space consists of unit
cubes, computations are highly efficient although com-
putational costs occur as the simulation alternates
between Cartesian and contravariant forms.

2.4. Describing sensory processing and behavior
decisions with the agent framework

Models of animal behavior range from the complex,
in which swimming is defined as the interactions of
muscles and neurons (Terzopoulos et al., 1995; Ijspeert

F ariant −1 ace-
m or grap
ig. 6. Bookkeeping individual virtual fish movement in contrav
ents within a unit cube into Cartesian space displacements f
space.fc is the inverse function for converting contravariant displ
hical output and movement analysis.
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and Kodjabachian, 1999) to rule-based methods such as
the barrier avoidance ruleHaefner and Bowen (2002)
applied to fish moving through the velocity field of a
diversion structure. In our system, fish move through
the forebay of a large hydropower dam and respond
only to hydrodynamic cues generated by forebay struc-
tures without visual or tactile contact with solid struc-
tures.

2.4.1. Identifying a mechanistic biological
movement hypothesis

Through natural selection riverine fish have evolved
rheotactic behaviors in response to a detailed per-
ception of the hydrodynamic environment (Kalmijn,
2000). Although what a fish perceives is undoubtedly
complex, we hypothesize salient hydraulic cues driving
their behaviors by considering hydrogeomorphology,
the Navier-Stokes equation of fluid motion and fish
sensory capabilities. Aquatic environments are rich in
acoustic and hydrodynamic signals (Schilt and Nestler,
1997; Rogers and Cox, 1988) because any object
that moves relative to a fluid generates a disturbance
field (Montgomery et al., 1995). Fish can detect flow
strength and direction (Montgomery et al., 2000; Voigt
et al., 2000), hydraulic strain (steady-state acceleration)
(Hudspeth, 1989), whole body acceleration (Kalmijn,
1989), and migrants are sensitive to pressure (Coutant,
2001). Water velocity, its first derivatives of strain
and acceleration, and pressure are also components of
the Navier–Stokes equation of fluid motion. We use
t ure
( ate
d y
c ined
i ng
s sis-
t cur-
r erts
f ce
p hen
a ut-
c cal
c ide
c ing
t or-
m city
fi fric-
t

2004). Wall-bounded flow gradients, associated with
friction resistance, exhibit increasing hydraulic strain
and decreasing water velocity towards a solid bound-
ary. Free-shear flow gradients, associated with form
resistance, exhibit increasing strain and water velocity
as an obstruction is approached. The pressure compo-
nent of the SVP Hypothesis recognizes that migrants
generally change depth at a rate related more to their
ability to adjust swim bladder volume than their ver-
tical swimming velocity. Within the Numerical Fish
Surrogate, we consider these hydrodynamic cues to be
environmental agents that interact with the fish agent.

The SVP Hypothesis uses four agents: the default
(A0) occurs in the absence of other agents, wall-
bounded flow gradient (A1), free-shear flow gradient
(A2), and pressure gradient (A3). A fish perceives an
agent by its hydraulic signature. A wall-bounded flow
gradient is perceived when a strain threshold,k1, is
exceeded. A free-shear flow gradient is perceived when
a strain threshold,k2, is exceeded wherek2 � k1. An
excessive change in pressure is perceived when the
change in depth, associated with hydrostatic pressure,
exceeds thresholdk3.

We represent the perceived stimuli strength of strain
at the fish centroid at timet following an analogy to
the decibel scale for sound. This assumes the fish’s
perception of total strain,I(t), is not linear with its
physical intensity,S(t) =

∑|∂ui/∂uj|, but rather its log.
A reference value,S0, is used to scale perceived strain
so increasing physical intensity,S(t), corresponds to
i

I

W ect
w r to
W e-
a und
s uli
i old
i

w ted
s ith
A en-
s nt at
he hydraulic variables of the strain–velocity–press
SVP) Hypothesis in the Numerical Fish Surrog
escribed inGoodwin (2004). The strain and velocit
omponents of the SVP Hypothesis are best expla
n the context of river geomorphology. In free flowi
treams, flow pattern results from: (1) friction re
ance producing wall-bounded flow gradients oc
ing when a solid boundary (e.g., river channel) ex
riction force on moving water and (2) form resistan
roducing free-shear flow gradients occurring w
n obstruction in the flow (e.g., stump or rock o
rop projecting into the flow field) produces a lo
onstriction in flow area. These two patterns prov
ues to migrating fish about spatial patterns allow
hem to navigate through complex flow fields. Inf
ation contained in the hydraulic strain and velo

elds is sufficient to separate structures producing
ion resistance and form resistance flows (Goodwin,
ncreasingI(t):

(t) = log10

[
S(t)

S0

]
(6)

e hypothesize that an individual’s ability to det
hen a strain threshold is exceeded is simila
eber’s Law (1846), which states that the “just notic

ble difference” between a signal and the backgro
timuli is a constant fraction of the background stim
ntensity. Mathematically, the detection of a thresh
s expressed as:

I(t)

Ia(t)
> ki (7)

here Ia is the perceived background or acclima
train level,ki is the threshold level associated w
i. Eq.(7) implies that a larger change in strain int
ity is needed to identify the presence of the age
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higher background levels than at lower levels and that
identification depends intimately on the individual’s
antecedent experience. Implicit in each threshold is a
time scale over which the change occurs.

Since I(t) is the instantaneous perceived total
hydraulic strain, the acclimated level is represented by
a moving average as:

Ia(t) = (1 − mstrain) · I(t) + mstrain · Ia(t − 1) (8)

wheremstrain is an adaptation coefficient with a value
between 0 and 1 that adjusts how information from
the present combines with information from the past.
Eq. (8) is an exponential moving average having a
long history in psychology studies (Bush and Mosteller,
1955). Variable discounting of past information is con-
sistent with the approach described inHirvonen et al.
(1999). Our method applies exponential moving aver-
ages to physicochemical stimuli and is supported by
observations of juvenile chum salmon, whose thermal
tolerance and resistance is influenced by prior thermal
history (Birtwell et al., 2003; Brett, 1952).

We represent the migrant’s perception of pressure as
linear with the physical intensity of hydrostatic pres-
sure, which is proportional to depth. We use a linear
difference between instantaneous,d(t), and acclimated,
da(t), depths for detecting pressure gradient threshold
k3. Acclimated depth is calculated using Eq.(8) by
replacing perceived strain with depth and identifying a
separate adaptation coefficientmdepth.

ify
o cific
b -
t ity
t ng
w ize
s ure
( urst
s ond
a rox-

imately 2 body lengths per second (Beamish, 1978).
Fish orientation and speed for each time increment are
described by the specified behaviorBi plus a random
component.

2.4.2. Converting identification of an agent into a
neurological response

We have shown how a fish could associate stimuli
inputs with specific agents,Ai, according to whether
or not the signals exceed intensity levelski. However,
converting identification of an agent into a neurological
response to that agent is not straightforward.Workman
et al. (2002)describe the probability of initiation of
upstream migration of steelhead as a power function
of the difference between temperature and a thresh-
old. However, in our case, and in general, animals
have a multitude of time varying streams of infor-
mation and must select between numerous behaviors.
Hence, a one-to-one relationship between a behavior
and a stimulus is not adequate. To characterize how
a fish responds to multiple streams of information we
use a game theoretic framework adapted byAnderson
(2002). In this framework, each behavior has an asso-
ciated intrinsic utility (ui). The animal estimates the
probability (Pi) of obtaining the utility from the infor-
mation stream. We treat information acquisition as dis-
crete events because our model updates the system state
in discrete increments of time. Because there may be
a bioenergetic cost (Ci) in carrying out the behavior,
independent of whether or not the utility is obtained,
t

U

I ities
f lects
t

s
o n
a a-

T
N ent coe

i (Bi)

0
1 creasin 0.80
2 ecreas 0.982
3 climate 0.935
The algorithm allows a virtual migrant to ident
ne of the four agents, each of which elicits a spe
ehavior (Table 1): (B0) swimming with the flow vec

or, (B1) swimming towards increasing water veloc
o minimize strain, (B2) swimming towards decreasi
ater velocity or against the flow vector to minim
train, and (B3) swimming towards acclimated press
depth). Swimming speed is bounded above by a b
peed of approximately 10 body lengths per sec
nd below by the nominal cruising speed of app

able 1
umerical Fish Surrogate agents, behavior responses, and ag

Agent (Ai) Behavior response

Null Follow flow
Wall-bounded flow gradient Swim towards in
Free-shear flow gradient Swim towards d
Pressure gradient Swim toward ac
he expected utility (Ui) from the behavior (Bi) is:

i(t) = Pi(t) · ui − Ci(t) (9)

n this framework, an animal updates the probabil
or the different behaviors at each time step and se
he behavior that has the greatest expected utility.

The animal’s probability estimate at timet depend
n the probability att − 1 and the new informatio
vailable in the intervalt − 1 tot. Expressing the prob

fficients

ui mi

0.35 1.00
g water velocity 0.55
ing water velocity or against the flow vector 0.99
d depth 0.99
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bility updating through an exponentially moving aver-
age gives:

Pi(t) = (1 − mi) · ei(t) + mi · Pi(t − 1) (10)

whereei(t) is a Boolean measure of the agent informa-
tion in the time interval andmi is a memory coefficient
weighting the current information and the past prob-
ability Pi(t − 1). Maintaining information across time
steps produces movement exhibiting persistence, i.e.,
where direction of travel during time incrementt to
t + 1 depends on the incrementt − 1 to t, which Wu
et al. (2000)identify as an important feature in model-
ing animal movement.

In the Numerical Fish Surrogate, events identify
whether or not the fish detects an agent. On detection
the Boolean event measure is 1 and otherwise it is 0.
Thus, for strain-based agent-behavior couplets, events
are defined:

ei(t) =




0, if
I(t)

Ia(t)
< ki

1, if
I(t)

Ia(t)
≥ ki

(11)

This definition of events is similar toAnderson’s (2002)
definition in that they mark the presence or absence of
an agent, and consistent withWorkman et al. (2002,
references therein)that threshold intensities can be cues
that trigger fish movement.

Animals may perceive time according to the rate of
e ent
c
a ne
e
m eat-
m d by
E i-
c ange,
a y the
o

ear
fl train
i of
t e
b ient
a d as
n rrent
f ing

Fig. 7. Illustration of the agent-based, event-driven algorithm for
migrants switching between behaviorsB0, B1, B2, andB3. Time-
varying changes in perceived strain relative to acclimated strain
crossing thresholdsk1 and k2 (A) produce Boolean event streams
e1(t) ande2(t) (B) that generate time-varying probabilitiesP(t) (E)
and utilitiesU(t) (F), whereu2 > u1 andU0 is time invariant. Changes
in perceived pressure are handled analogously using a thresholdk3

(C) and event stream (D). Elicited behaviorBi (G) has the maximum
expected utilityU(t) (F) at timet. When implemented,B3 overrides
other vertical movement behaviors.

to a free-shear flow gradient is greater than the intrinsic
utility of responding to a wall-bounded flow gradient.
The construct for the Numerical Fish Surrogate is illus-
trated inFig. 7. Bioenergetic cost is not included in the
present formulation.
vents and not according to the fixed time increm
onvention typical of computer programming (Hills
nd Adler, 2002). In a time increment, if more than o
vent occurs for an agent, e.g.,I(t)/Ia(t) > 2k1, Eq.(10)
ay be applied recursively for the agent. This tr
ent has similarities to the definition of events use
wing et al. (2002), which denote a significant biolog
al change resulting in an instantaneous state of ch
nd his event space concept where time is driven b
ccurrence of events.

Information from the wall-bounded and free-sh
ow gradients are not unique because both use s
nformation. Separating the information in terms
hreshold levels,k2 > k1, is sufficient to differentiat
etween wall-bounded and free-shear flow grad
gents. However, stimuli variables may be refine
ecessary. Indeterminacy is not a problem in the cu

ormulation because the intrinsic utility of respond
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3. Numerical Fish Surrogate application and
evaluation

Hydropower dams on the Columbia and Snake
Rivers (Fig. 2) contain a number of complex forebay
structures to guide fish and trash away from turbines
and past the dam. The Numerical Fish Surrogate is
designed to be a decision-support tool that can (1)
forecast observed (measured) trends in fish passage
proportions and (2) rank fish bypass configurations
by descending order of their measured passage pro-
portions. The Numerical Fish Surrogate is calibrated
with data for Lower Granite Dam forebay configuration
DH8 (Fig. 1; Table 2). Data include: (1) high reso-

F plan view (A) and vertical (B) movement of a virtual migrant responding to the
B
t
h
h
o

lution CFD model output to describe forebay hydro-
dynamic pattern, (2) horizontal and vertical distribu-
tions of migrants entering the dam forebay (Johnson
and Kim, 2004), (3) detailed 3-D tracks of individual
acoustically-tagged migrants (Cash et al., 2002), and
(4) proportions of fish entering the spillway, turbines,
and bypass (Surface Bypass Collector,Fig. 1) (Anglea
et al., 2001). For validation, passage proportions fore-
cast by the Numerical Fish Surrogate are compared to
measured passage proportions at 19 other configura-
tions: 2 at Ice Harbor Dam (Moursund et al., 2003),
5 at Wanapum Dam (LGL Limited, 2005), and 12 at
Lower Granite Dam (Anglea et al., 2001, 2003; Plumb
et al., 2004) (Table 2).
ig. 8. Output from the Numerical Fish Surrogate showing the

ehavioral Guidance Structure (BGS,Fig. 1) for configuration DH8 (Table

he resulting expected utility of each agent-behavior couplet (C) are di
ighlighted (red) portion of the yellow virtual migrant 3-D track and is
ydrodynamic pattern associated with the BGS. For reference, red tr
f fish movement behavior snapshot in (C) from timet = 2800 s to 3000 s
2). Information streams of perceived changes in strain and depth and
splayed from timet = 2800 to 3000 s. This time interval corresponds to the
the time interval during which this virtual migrant first encounters the

iangle indicates location of middle entrance to SBC. Full video animation
can be downloaded fromhttp://EL.erdc.usace.army.mil/emrrp/nfs/.

http://el.erdc.usace.army.mil/emrrp/nfs/
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Table 2
Dam structure and operational scenarios for Numerical Fish Surrogate studies

Passage route Dam Year Case Day/night Passage (%) CFD flow

Observed NFS m3/s % of Total

(a) Bypass
IH 2003 BC1 Composite 0.0 0.0 0.0 0.0

2003 BC3 Composite 0.0 0.0 0.0 0.0

WAN 1997 1997AFP Composite 3.0 3.1 101.9 1.4
2001 2001 Composite 40.2 31.3 48.1 2.6
2002 2002Mixed Composite 26.7 24.6 337.0 8.4
2002 2002MOA Composite 6.9 7.5 53.8 1.3
2002 2002TopSpill Composite 17.9 15.5 345.5 8.3

LG 2003 AR6 Composite 68.0 59.3 198.2 10.9
2003 NR3 Composite 59.0 50.3 198.2 9.3
2000 DH8 Composite 36.0 25.7 99.1 3.8
2000 DL5 Composite 37.0 32.5 99.1 5.1
2000 SH4 Composite 44.0 51.0 99.1 4.3
2000 SL2 Composite 42.0 53.2 99.1 4.1
2002 A2 Composite 78.0 44.6 198.2 9.3
2002 B2 Composite 73.9 63.5 198.2 10.4
2002 C2 Day 1.5 0.0 0.0 0.0
2002 D2 Night 2.0 0.0 0.0 0.0
2002 E2 Composite 41.7 48.2 198.2 6.0
2002 F2 Day 0.4 0.0 0.0 0.0
2002 G2 Night 0.0 0.0 0.0 0.0

(b) Spillway
IH 2003 BC1 Composite 78.5 78.1 1265.8 59.8

2003 BC3 Composite 89.5 79.1 1246.0 58.6

WAN 1997 1997AFP Composite 61.0 45.2 2829.0 39.2
2001 2001 Composite 24.5 5.7 611.7 32.7
2002 2002Mixed Composite 14.7 9.6 640.0 16.0
2002 2002MOA Composite 33.7 35.9 1485.6 35.9
2002 2002TopSpill Composite 0.0 0.0 0.0 0.0

LG 2003 AR6 Composite 5.0 10.0 339.8 18.8
2003 NR3 Composite 6.0 8.9 240.7 11.3
2000 DH8 Composite 24.0 23.3 450.3 17.3
2000 DL5 Composite 23.0 24.5 351.1 18.0
2000 SH4 Composite 22.0 22.2 450.3 19.5
2000 SL2 Composite 22.0 22.8 450.3 18.7
2002 A2 Composite 3.1 10.2 240.7 11.3
2002 B2 Composite 9.5 23.4 438.9 23.0
2002 C2 Day 2.2 0.0 0.0 0.0
2002 D2 Night 89.3 76.8 1223.3 45.9
2002 E2 Composite 47.7 42.7 1427.2 43.3
2002 F2 Day 69.5 36.8 693.8 26.2
2002 G2 Night 87.6 73.2 1483.9 49.2

(c) Turbines
IH 2003 BC1 Composite 21.5 21.9 849.5 40.2

2003 BC3 Composite 10.5 20.9 880.7 41.4
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Table 2 (Continued)

Passage route Dam Year Case Day/night Passage (%) CFD flow

Observed NFS m3/s % of Total

WAN 1997 1997AFP Composite 36.0 51.7 4281.7 59.4
2001 2001 Composite 32.3 63.0 1212.0 64.8
2002 2002Mixed Composite 56.6 65.8 3032.8 75.6
2002 2002MOA Composite 58.4 56.6 2603.5 62.8
2002 2002TopSpill Composite 91.1 84.5 3811.6 91.7

LG 2003 AR6 Composite 27.0 30.7 1274.3 70.3
2003 NR3 Composite 34.0 40.8 1699.1 79.5
2000 DH8 Composite 40.0 51.0 2055.9 78.9
2000 DL5 Composite 40.0 42.9 1498.0 76.9
2000 SH4 Composite 34.0 26.8 1755.7 76.2
2000 SL2 Composite 36.0 24.1 1860.5 77.2
2002 A2 Composite 18.9 45.1 1699.1 79.5
2002 B2 Composite 16.7 13.2 1274.3 66.7
2002 C2 Day 96.3 100.0 1812.3 100.0
2002 D2 Night 8.7 23.2 1444.2 54.1
2002 E2 Composite 10.5 9.1 1670.8 50.7
2002 F2 Day 30.1 63.2 1953.9 73.8
2002 G2 Night 12.4 26.8 1529.2 50.8

IH, Ice Harbor Dam on Snake River; observed hydroacoustic based passage % fromMoursund et al. (2003). WAN, Wanapum Dam on Columbia
River; observed radio-tag based passage % fromLGL Limited (2005). LG, Lower Granite Dam on Snake River; observed hydroacoustic based
passage % in 2000 and 2002 fromAnglea et al. (2001, 2003)and radio-tag based passage % in 2003 fromPlumb et al. (2004). Numerical Fish
Surrogate (NFS) passage % based on 5000 virtual migrants.

3.1. Calibration

Calibration is a two-phase process. First, model
coefficientski, mstrain, mdepth, mi, andui are adjusted
until individual virtual migrant tracks calculated at 2.0-
s time increments qualitatively resemble movement
patterns of acoustically-tagged migrants for configura-
tion DH8 (Fig. 1; Table 2). Next, coefficients are fine-
tuned so that the passage proportions of 2000 virtual
migrants released upstream quantitatively resemble
the measured passage proportions through the bypass
(Table 2a), spillway (Table 2b), and turbines (Table 2c)
for configuration DH8.

3.1.1. Matching movement patterns of real and
virtual migrants

To illustrate the first phase of calibration, we detail
the interactions of a virtual migrant (Fig. 8) with its
hydrodynamic environment (Fig. 9) as it approaches
and then parallels the Behavioral Guidance Structure
(BGS,Fig. 1) over a 200-s interval. At the beginning of
the interval (t = 2800 s) the changes in perceived strain
and depth are small, utilityU0 dominates, and the vir-
tual migrant elicits behaviorB0 (Table 1). The change

in perceived strain increases as the virtual migrant
approaches elevated strain associated with the BGS
(Fig. 9, right plots) and att = 2850 s exceeds threshold
k1. Utility U1 exceedsU0 at t = 2860 s and the virtual
migrant switches from behaviorU0 to U1. The migrant
also encounters increasing downward velocity associ-
ated with flow passing under the BGS (Fig. 10) increas-
ing the change in perceived pressure. Att = 2875 s,
utility U3 exceedsU1 eliciting vertical behaviorB3
that overrides the vertical behavior component ofU1
until t = 2925 s whenU3 drops belowU1. Acclimated
strain Ia(t) and depthda(t) adjust to new levels each
time step and the behavior cycle repeats as the vir-
tual migrant moves along the BGS. Both acoustically-
tagged (Fig. 11) and virtual (Fig. 8) migrants deeper
in the water column pass under the trash boom with
no apparent response (Figs. 8A and 11B), approach
the BGS at approximately the same angle as flow
(Figs. 8A, 10, and 11B), move parallel to the BGS in
a vertically oscillatory manner (Figs. 8B and 11), and
mill below the entrance to the SBC closest to the BGS
and above the turbine intakes (Figs. 8A and B and 11A).
Acoustically-tagged migrants inFig. 11were observed
at night so visual cues are not likely dominant.
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Fig. 9. Velocity magnitude (A, plots on left) and hydraulic strain (B, plots on right) for configuration DH8 (Table 2). Cross-sectional slices taken
through middle entrance to the SBC (y = 44.6 m), cross-sectional slices parallel to dam face (x = 50 and 100 m), and plan view slices (z = 37 and
42.25 m) show the change in hydrodynamic pattern at different locations and depths. Water surface elevation is 44.7 m.

Migrants nearer the water surface exhibit different
movement patterns also matched by the Numerical Fish
Surrogate. Both acoustically-tagged (Fig. 12B and C)
and virtual (Fig. 12A) migrants near the water surface
move back and forth between the middle SBC entrance
(Fig. 1) and the powerhouse side of the trash boom, but
avoid areas near the BGS. Both acoustically-tagged and
virtual migrant movement patterns are in sharp contrast
to movement patterns of passive particles (Fig. 12D).
The apparent difference in acoustically-tagged migrant
movement patterns at near-surface (Fig. 12B and C)
and deeper (Fig. 11) depths are matched by virtual
migrants whose behavior is attributable to the different
hydrodynamic patterns encountered at different depths
(Fig. 9).

Lastly, acoustically-tagged and virtual migrants
have similar modes and right-skewed frequency dis-
tributions of swimming speed (Fig. 13). Discrepan-
cies in sampling intervals between acoustically-tagged
and virtual migrants and the correlation between spa-
tial location and frequencies of acoustically-tagged
migrant observations preclude a more quantitative
comparison.

3.1.2. Matching patterns in fish passage
proportion

After the Numerical Fish Surrogate approximates
the predominant movement patterns of individual
acoustically-tagged migrants, agent coefficients are
fine-tuned until the passage proportions of 2000 virtual
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Fig. 10. Three neutrally-buoyant passive particles (behavior rules
turned OFF) released at approximately the same depths as virtual
migrant in Fig. 8 and acoustically-tagged migrants inFig. 11 for
configuration DH8 (Table 2).

migrants resemble the observed (measured) passage
proportions from fixed-location hydroacoustic instru-
mentation for configuration DH8 (Anglea et al., 2001).
Our goal is to match the observed proportions from
hydroacoustic and radio-tag measurement techniques
within about±10%.

Two thousand virtual migrants are released in the
middle 80% of the river cross-section to avoid corrupt-
ing Ia(t) with localized boundary-induced hydraulics.
Virtual migrants are also released about a kilometer
upstream from the dam to allow time forIa(t) and
da(t) to stabilize, prior to encountering the high-energy
hydrodynamic patterns of the dam (Fig. 9). Upstream
day and night vertical distributions of migrants are
obtained from published reports covering a variety of
methods (Johnson and Kim, 2004) to capture observed
diel changes close to dams (Steig and Johnson, 1986;
Coutant and Whitney, 2000; Cash et al., 2002) (Fig. 14).
A composite of day and night vertical distributions is
used for configurations not categorized as either day-
or night-only studies (Table 2).

3.2. Validation

The calibrated Numerical Fish Surrogate is vali-
dated against 19 different structural and operational
bypass configurations at 3 hydropower dams on 2

Fig. 11. Representative acoustically-tagged migrant movement pat-
terns at depths similar to virtual migrant inFig. 8and passive particles
in Fig. 10for configuration DH8 (Table 2). Acoustic-tag data from
Cash et al. (2002).

rivers (Fig. 2; Table 2). Improvements in the memory
allocation of the Numerical Fish Surrogate permit-
ted simulation of 5000 virtual migrants at this stage
in the study. Forecasted passage proportions for the
calibration configuration DH8 did not change sub-
stantially with the increase from 2000 to 5000 virtual
migrants.

We use two metrics to assess the forecasting capabil-
ity of the Numerical Fish Surrogate: (1) ability to fore-
cast measured trends in fish passage proportions using a
linear regression of measured versus forecasted values
(Smith and Rose, 1995) and (2) ability to rank con-
figurations by descending order of their measured pas-
sage proportions. Observations and forecasts at bypass,
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Fig. 12. Comparison of representative near-surface virtual (A) and acoustically-tagged (B and C) migrant movement patterns for configuration
DH8 (Table 2). Three neutrally-buoyant passive particles (behavior rules turned OFF) (D) released near water surface at same locations as virtual
migrants in (A). Acoustic-tag data fromCash et al. (2002).

spillway, and turbine passage routes with either 0% or
100% of the river flow in the CFD model (Table 2)
are not used in the analysis. The results of the Numer-
ical Fish Surrogate generally match measured trends
in passage for the three possible exit routes (Fig. 15A;
Table 3). Concurrence between observed (measured)
and virtual distributions is a strong test of a model (Bart,
1995) especially whenr2 exceeds 0.65 (Prairie, 1996).
The passage of passive particles (“behavior rules off”)
released at the virtual migrant locations differed sub-
stantially from either measured passage or “behavior
rules on” forecasts (Fig. 15B; Table 3). The Numeri-
cal Fish Surrogate also generally matches the observed
ranking of configurations as top-, moderate-, and low-

performing using the metric of passage per unit of mod-
eled flow for bypass (Table 4a), spillway (Table 4b),
and turbines (Table 4c). The larger variability between
measured and forecasted turbine passage proportions
(Fig. 15A; r2 in Table 3) is likely related to the larger
variability of powerhouse operations. Even when total
powerhouse discharge is held constant during a field
study, turbine units in operation and the distribution
of load across those units typically changes with much
greater variability then observed with either spillway or
bypass operations. Thus, the steady-state CFD model
we use better captures the hydrodynamic stimulus pat-
terns at spillway and bypass passage routes than at the
powerhouse.
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Table 3
Slopes of and variation (r2) about linear regression trend lines inFig. 15

Release distribution Passage route Behavior rules Slope r2

Calibration/validation Bypass ON 0.74 0.78
OFF 0.17 0.39

Spillway ON 0.77 0.89
OFF 0.49 0.54

Turbines ON 0.82 0.65
OFF 0.32 0.14

Sensitivity analysis Bypass ON 1.07 0.80
OFF 0.10 0.10

Spillway ON 0.95 0.85
OFF 0.49 0.50

Turbines ON 1.15 0.61
OFF 0.24 0.08

Calibration/validation release distribution (Fig. 14) from Johnson and Kim (2004). Sensitivity analysis release distribution (Fig. 14) from Faber
et al. (2004).

Fig. 13. Volitional swim speed distributions of nighttime
acoustically-tagged (A) and 100 virtual (B) migrants for con-
figuration DH8 (Table 2). Acoustic-tag data filtered to exclude
observations where tagged migrants may have exited and re-entered
the observation area. Acoustic-tag data fromCash et al. (2002).

3.3. Sensitivity analysis

We perform a basic sensitivity analysis of the
Numerical Fish Surrogate to gauge the resilience of
forecasted passage results when biological input is
changed. We use a depth distribution of migrants
observed upstream of The Dalles Dam on the Columbia
River (Fig. 14; Faber et al., 2004) to determine sen-
sitivity of the Numerical Fish Surrogate to initial
release distribution. Slopes andr2s for the “behav-
ior rules on” sensitivity release distribution indicate
the Numerical Fish Surrogate generally matches the
measured passage proportions as well as the cali-
bration/validation release distribution (Fig. 15A–C;
Table 3). Slopes andr2s for the “behavior rules
off” sensitivity release distribution are slightly worse
than for the calibration/validation release distribution
(Fig. 15B–D; Table 3).

4. Discussion

4.1. The Numerical Fish Surrogate

The Numerical Fish Surrogate forecasts reason-
ably well the response of individual migrants to spe-
cific hydraulic features and generally forecasts group
response of large numbers of migrants to alternative
bypass system designs. These capabilities suggest the
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Table 4
Ranking of configurations by observed and forecasted passage metrics

Passage route Case Passage (% per unit flow)

Observed Observed
rank

NFS
(rules ON)

NFS rank
(rules ON)

NFS
(rules OFF)

NFS rank
(rules OFF)

(a) Bypass
2001 0.835 1 0.604 1 0.037 11
SH4 0.444 2 0.512 3 0.059 7
SL2 0.424 3 0.535 2 0.062 6
A2 0.393 4 0.225 10 0.075 3
DL5 0.373 5 0.328 4 0.067 4
B2 0.373 6 0.319 5 0.064 5
DH8 0.363 7 0.258 7 0.049 8
AR6 0.343 8 0.299 6 0.098 1
NR3 0.298 9 0.253 8 0.079 2
E2 0.211 10 0.239 9 0.043 10
2002MOA 0.128 11 0.125 11 0.013 13
2002Mixed 0.079 12 0.068 12 0.034 12
2002TopSpill 0.052 13 0.041 13 0.043 9
1997AFP 0.029 14 0.028 14 0.005 14
BC1 – – – – – –
BC3 – – – – – –
C2 – – – – – –
D2 – – – – – –
F2 – – – – – –
G2 – – – – – –

(b) Spillway
F2 0.100 1 0.053 6 0.038 13
D2 0.073 2 0.063 2 0.034 14
BC3 0.072 3 0.061 3 0.057 2
DL5 0.066 4 0.070 1 0.057 4
BC1 0.062 5 0.060 4 0.057 3
G2 0.059 6 0.049 9 0.030 16
DH8 0.053 7 0.052 7 0.042 10
SL2 0.049 8 0.050 8 0.046 7
SH4 0.049 9 0.049 10 0.044 8
2001 0.040 10 0.009 18 0.069 1
E2 0.033 11 0.029 13 0.028 17
NR3 0.025 12 0.037 12 0.044 9
2002Mixed 0.023 13 0.014 17 0.042 11
2002MOA 0.023 14 0.021 15 0.031 15
1997AFP 0.022 15 0.015 16 0.017 18
B2 0.022 16 0.053 5 0.056 5
AR6 0.015 17 0.029 14 0.039 12
A2 0.013 18 0.042 11 0.049 6
2002TopSpill – – – – – –
C2 – – – – – –

(c) Turbines
C2 0.053 1 0.055 1 0.055 1
DL5 0.027 2 0.029 4 0.049 4
2001 0.027 3 0.048 2 0.033 13
BC1 0.025 4 0.025 6 0.027 15
2002TopSpill 0.024 5 0.020 11 0.020 17
2002MOA 0.022 6 0.019 13 0.014 19
AR6 0.021 7 0.024 8 0.053 2
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Table 4 (Continued)

Passage route Case Passage (% per unit flow)

Observed Observed
rank

NFS
(rules ON)

NFS rank
(rules ON)

NFS
(rules OFF)

NFS rank
(rules OFF)

NR3 0.020 8 0.024 9 0.043 5
DH8 0.019 9 0.025 7 0.037 11
SH4 0.019 10 0.015 16 0.042 7
SL2 0.019 11 0.013 17 0.040 9
2002Mixed 0.019 12 0.020 12 0.018 18
F2 0.015 13 0.032 3 0.038 10
B2 0.013 14 0.010 19 0.049 3
BC3 0.012 15 0.023 10 0.027 16
A2 0.011 16 0.027 5 0.043 6
1997AFP 0.008 17 0.011 18 0.008 20
G2 0.008 18 0.017 14 0.036 12
E2 0.006 19 0.005 20 0.031 14
D2 0.006 20 0.016 15 0.041 8

Numerical Fish Surrogate and embodied SVP Hypoth-
esis provide a sufficient understanding of migrant
passage dynamics to identify opportunities for cost-
effective intervention to improve system operation
(Stedinger, 2000). As a tool, the Numerical Fish Surro-
gate can be integrated into common engineering prac-

tice where fish behavior is an important element of
water resources planning in a manner suggested by
Popper and Carlson (1998).

Our application documents response of migrants
to hydrodynamic patterns in dam forebays. However,
the Numerical Fish Surrogate may also be applied to

Fig. 14. Depth distributions of 5000 virtual migrants released at Lower Granite Dam for calibration and validation (Johnson and Kim, 2004)
a
nd for sensitivity analysis (Faber et al., 2004).
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Fig. 15. Comparison of observed (measured) and Numerical Fish Surrogate (NFS) virtual migrant passage proportions, on a percentage basis,
for configurations inTable 2using calibration/validation release distribution (Fig. 14) (A). Comparison of observed and passive particle passage
proportions, on a percentage basis, using calibration/validation release distribution (B). Comparison of observed and virtual migrant passage
proportions, on a percentage basis, using sensitivity analysis release distribution (Fig. 14) (C). Comparison of observed and passive particle
passage proportions, on a percentage basis, using sensitivity analysis release distribution (D). NFS virtual passage proportions based on 5000
virtual migrants. Passage (exit) routes are bypass, spillway, and turbines. Slopes of and variation about each of the linear regression trend lines
summarized inTable 3. Routes with either 0% or 100% of river flow in CFD model are not plotted or factored into trend lines. Observed
(measured) Lower Granite Dam hydroacoustic based migrant passage proportions in 2000 and 2002 fromAnglea et al. (2001, 2003), radio-tag
based migrant passage proportions in 2003 fromPlumb et al. (2004), Ice Harbor Dam hydroacoustic based migrant passage proportions from
Moursund et al. (2003), and Wanapum Dam radio-tag based migrant passage proportions fromLGL Limited (2005).

tailraces where migrants can be subjected to injury
and mortality in the high-energy hydraulic environ-
ments (Coutant, 1987; Christie and Regier, 1988). The
Numerical Fish Surrogate can be used to improve
the assessment of how different structural and oper-
ational alternatives impact the volitional egress move-

ments, predator locations and predator–prey interac-
tions (Petersen and DeAngelis, 2000; Anderson et al.,
2005), and temperature and dissolved gas exposure his-
tories (Anderson, 2000a; Backman et al., 2002; Nestler
et al., 2002; Scheibe and Richmond, 2002) of fish in
tailraces.
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4.1.1. Archiving knowledge for fish passage
Presently, fish passage design relies on a “build-and-

test paradigm” to select from among alternative com-
peting structures. Over a period of time, the selected
alternative is monitored, evaluated, and incrementally
improved until a target passage is obtained. How-
ever, the “build-and-test paradigm” is expensive, inef-
ficient, and impacts fish populations as scientists and
engineers incrementally improve bypass performance,
often with little or no scientific advancements in under-
standing fish behavior. The Numerical Fish Surrogate
is a theoretically- and computationally-robust method
to integrate, better understand, and forecast fish move-
ment in hydrodynamic and water quality fields as
first advocated byAnderson (1988). It can reduce
reliance on the “build-and-test paradigm”. Fish move-
ment response to patterns in available biotic and abi-
otic stimuli are decoded into a mechanistic biological
hypothesis of individual fish behavior using agents
and coefficients for a given target species and life-
stage. The Numerical Fish Surrogate then serves as a
knowledge base for qualitative and quantitative under-
standing of fish movement behavior as the equations
describing a particular hypothesis about fish move-
ment and passage behaviors are updated and improved.
These updates may quantitatively capture and describe
how passage behavior changes by species, race, size, or
other variables. This knowledge can be ported to other
locales where designs for passage of the same species
and life-stage are needed.
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for which it is best suited. ELAM modeling systems
like the Numerical Fish Surrogate can be considered
to be a single, integrated knowledge engine in which
information can be rotated, translated, converted, or
rescaled, as needed, to be used by any one of the
three frameworks. In such an integrated system, the
Eulerian framework efficiently simulates processes in
which the entity of interest is small relative to the phys-
ical domain of the study system. The entities can be
aggregated into control volumes and their dynamics
simplified as cell masses and fluxes without signifi-
cant errors of aggregation. This simplification comes
at the loss of identity during aggregation (Nestler
et al., 2005). The Lagrangian framework efficiently
simulates entities intermediate in size relative to the
physical domain of the system or have other attributes
that result in unacceptable accumulation of error during
aggregation. The Lagrangian frame allows the integrity
and separate identity of each individual to be main-
tained and tracked within an analysis, but often at the
expense of computational time. The agent framework
is well suited for entities requiring governing equations
separate from the rest of the system, either because of
their large relative size or because of unique behavior.
Within the Numerical Fish Surrogate, the CFD model
represents the Eulerian frame, particles and particle
traces represent the Lagrangian frame, and behavioral
rules represent the agent frame.

At an application level perspective, ELAM mod-
els like the Numerical Fish Surrogate address sev-
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.2. The Eulerian–Lagrangian–agent method

The Eulerian–Lagrangian–agent method (ELA
sed for the Numerical Fish Surrogate can be
idered from a broad philosophical perspective
rom a specific application. From a philosophical p
pective, methods to explore, formalize, and f
ast dynamics of complex, multi-scale proces
ypical of ecosystem dynamics, can be categor
s Eulerian, Lagrangian, or agent. We know of
ther frameworks for handling the spatial dynam
f animal movement (Parrish and Edelstein-Kesh
999). Coupled Eulerian–Lagrangian–agent fra
orks, although mathematically and computation
hallenging, can be used to address a wide va
f simulation challenges because the coupling a

ecture allows each frame to be applied at the s
ral needs in ecological modeling: (1) conversion
nformation from sources that differ in metric, ran
cale, and dimensionality to a form of computer sc
agents) that corresponds to animal perceptions (Bian,
003), (2) ability to systematically organize and eva
te behavior hierarchies from the integration of in
ation from various sensory modalities that may

arying precedence during the changing phases
ehavioral sequence (Sogard and Olla, 1993; Ne
t al., 2001), (3) decentralized computer script
dding, eliminating, or modifying components with
ffecting the rest of the model (Ginot et al., 2002), (4)

he theoretical and computational basis to elicit vec
ased movement of individuals responding to ab
nd biotic stimulus data provided in either Euler
Tischendorf, 1997) or Lagrangian forms (Nestler et al.
005), and (5) ability to easily compare model result
eld-collected data (Hastings and Palmer, 2003). Vir-
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tual individuals can then be used to explore plausible
movement strategies of real individuals. Each virtual
individual may represent an individual or some aggre-
gate of the real population having attributes of species,
size, age, life-stage, or other attributes necessary for
realistic simulation. Virtual sampling (Halle and Halle,
1999; Goodwin et al., 2001; Nestler et al., 2005) that
considers limitations and biases of the field sampling
protocol can then be used with statistics to assess model
performance (Grimm et al., 1999).

The Eulerian–Lagrangian-agent method (ELAM)
in this paper derives from the integration of meth-
ods in Goodwin et al. (2001)and Anderson (2002),
but embodies many features of the following meth-
ods: Eulerian–Lagrangian methods (ELMs) used in the
study and simulation of hydrodynamics (Costa and
Ferreira, 2000), coupled modeling (DeAngelis and
Cushman, 1990; Hanna et al., 1999; Nestler et al.,
2005), grid-, agent-, and object-oriented concepts for
describing the environment (Lai et al., 2003a; Bian,
2003), event-based concepts (Ewing et al., 2002),
spatially-explicit IBMs (Dunning et al., 1995; Romey,
1996; Clark and Rose, 1997; Van Winkle et al., 1998;
Railsback et al., 1999a; Dagorn et al., 2000; Gaff
et al., 2000; Petersen and DeAngelis, 2000; Xiao,
2000), linked models of environmental dynamics and
individual fish behavior (Hinckley et al., 1996; Bourque
et al., 1999; Railsback et al., 1999b; Anderson, 2000b;
Haefner and Bowen, 2002; Hinrichsen et al., 2002;
Nestler et al., 2002; Karim et al., 2003), and
p 2;
S

4

4
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h fish
r tion
( ck,
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g ergy
e age
f FD
m FD
m tely
d new,
e tion

(LES) CFD modeling (e.g.,Mahesh et al., 2004;
McCoy et al., 2005; Tokyay and Constantinescu,
2005) may be needed to more accurately resolve eddy
formation and turbulence production at spatiotemporal
scales important to fish behavior.

4.3.2. Expanding accuracy and usefulness of
ELAM models

Accuracy and usefulness of ELAMs can be
improved and expanded, respectively. To improve
accuracy, genetic algorithm optimization methods can
be employed to efficiently calibrate coefficients with
suitable optimization metrics. Calibration methods tai-
lored for models with synergies (e.g.,van Nes et al.,
2002) can also be employed. Ecological modeling may
be enhanced through employment of an ELAM frame-
work to integrate algorithms of movement behavior,
bioenergetics and foraging (e.g.,Stockwell and John-
son, 1997), growth, recruitment, mortality, nutrient
cycling (e.g.,Schindler and Eby, 1997), and school-
ing and/or predator–prey interactions (e.g.,Huth and
Wissel, 1992, 1994; Niwa, 1994; Nonacs et al., 1994;
Reuter and Breckling, 1994).

Embedding existing algorithms of population
dynamics into an ELAM model provides a well suited
construct for studying and modeling the exposure
histories of individuals to environmental conditions
(e.g.,Smith et al., 2002), overlap dynamics with other
species (e.g.,Pientka and Parrish, 2002), and inter-
specific competition and predation (e.g.,Reese and
H l-
i ork
f
e t of
c th of
a erse
p fac-
t ibed
i

ods
( pu-
t the
m pu-
l ms
f u-
l sys-
t iza-
t ater
article-based simulations (Haefner and Bowen, 200
cheibe and Richmond, 2002).

.3. Future directions

.3.1. Emerging modeling technologies
Mismatch between spatial scales at wh

ydraulics are modeled and scales at which
espond affects accuracy of fish behavior simula
Kondolf et al., 2000; Bult et al., 1999; Railsba
999). Flow may become unsteady and hydra
radients become more pronounced in the high-en
nvironment close to the openings of fish pass

acilities. In such settings, steady-state RANS C
odeling may be inadequate and improved C
odeling methods may be needed to accura
ecode and forecast fish movement. We believe
merging methods such as large-eddy simula
arvey, 2002). ELAM models coupled with water qua
ty and eutrophication models provide a framew
rom which to improve existing efforts (e.g.,Karim
t al., 2003) to understand and forecast the impac
hanges in land use on the movement and heal
quatic species. ELAMs can also simulate the inv
roblem where highly mobile species may be a

or in the movement of a contaminant as descr
n Monte (2002).

In summary, Eulerian–Lagrangian–agent meth
ELAMs) provide a robust theoretical and com
ational foundation to mathematically interpret
ovement of individuals useful for forecasting po

ation patterns. ELAMs can accommodate algorith
rom the field of individual-based modeling to form
ate a modeling framework with an expanded eco
em perspective for system-wide analyses. Optim
ion and simulation methods frequently used in w
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resource systems engineering (e.g.,Loucks et al., 1981;
Loucks and van Beek, 2005) can then be used to
develop improved management strategies (e.g.,Jager
and Rose, 2003) using transparent and intuitive means
that are also easy to visualize, communicate, and eval-
uate.
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