Structured Decision Making for Delta Smelt: Demo Project Assessing Resiliency Strategy Actions

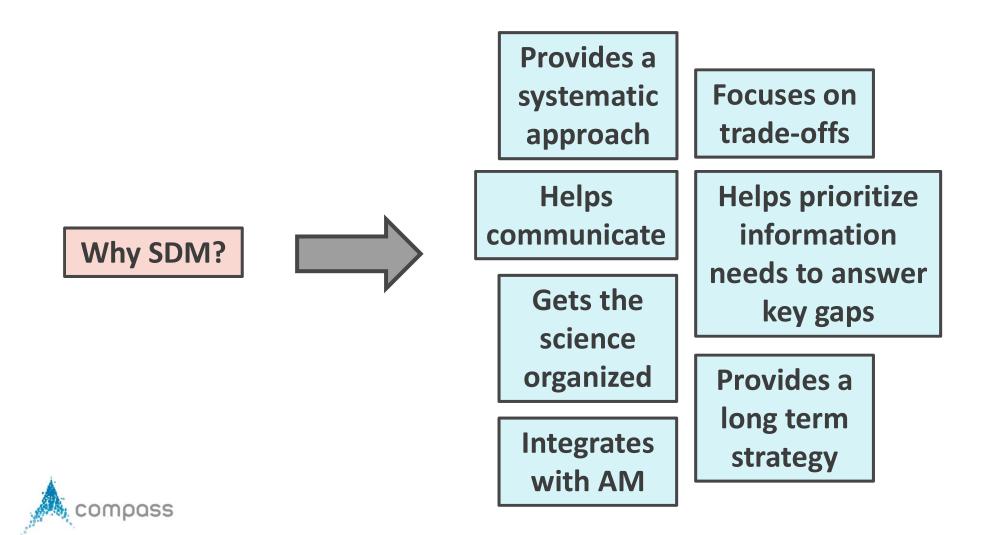
CSAMP Meeting

January 31, 2018

Presented by: Graham Long and Sally Rudd, Compass Resource Management

glong@compassrm.com / srudd@compassrm.com

What We Did


Applied SDM methods to address the question:

Which Delta Smelt Resiliency Strategy actions should be prioritized over the next few years?

Conducted a **coarse-level evaluation** of 13 actions (full build-out, best case scenarios)

Why We Did It

Who Helped

Technical Working Group

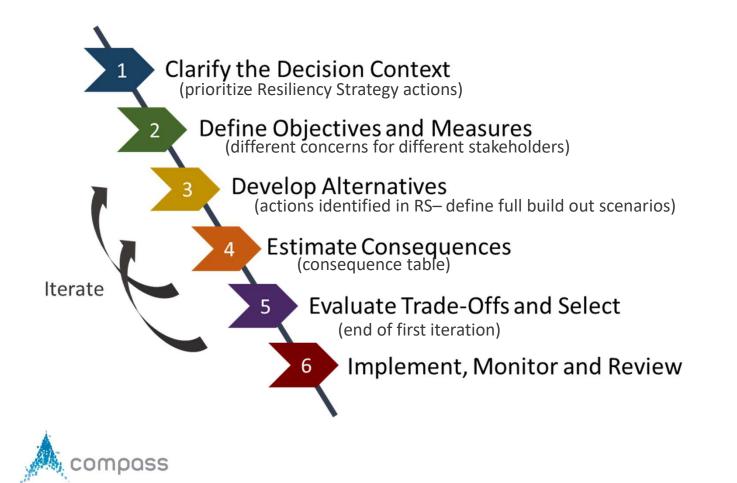
Ted Sommer (DWR) Scott Hamilton (CSD) Pat Coulston (DFW) Shawn Acuña (MWD) Will Smith (FWS)

CAMT SDM Core Team

Carl Wilcox (DFW), Ted Sommer (DWR), Scott Hamilton (CSD), Erin Gleason (FWS), Kaylee Allen (FWS), Cathy Marcinkevage (NOAA), David van Rijn (USBR), Frances Brewster (PWAs), Garwin Yip (NOAA), Maria Rea (NOAA), Gregg Erickson (DFW), Jason Peltier (PWAs), Josh Israel (USBR), Dave Mooney (USBR), Ingram Campbell (DC), Leo Winternitz (NGOs)

DOSS

Other Contacts


Louise Conrad (DWR), Eddie Hard (DBW), Brad Cavallo (Cramer), Erik Loboschefsky (DWR), John Durand (UCD), Rosemary Hartman (DFW), April Hennessey (PWAs), Jim Hobbs (UCD), Brett Harvey (DWR), and others.

Approach

Full Build Out Analytical Approach

Define Full Build-out Scenarios

Resiliency Strategy Action	Full Build-out Scenario
Aquatic Weed Control	10,000 ac of aquatic weed control; assumes no adverse impact of herbicides (best case)
North Delta Food Web	24,000 af pulse flows in Jul & Sep in Yolo Bypass
Outflow Augmentation	250 taf to keep X2< 80km for as long as possible in spring/summer
SMSCG Reoperation	Operate gates to make SM as fresh in below normal and dry years as in above normal years; offset salinity increase in Delta with 60 taf
Sediment Supplementation	Increase turbidity in LSZ by 10 NTU in below normal, dry and critical years
Roaring River	Increase connectivity of Roaring River to the estuary and mange to improve food supply
Coordinate Managed Wetlands	Flood and drain 7,500 ac of managed wetlands to improve food
Adjust Fish Salvage Operations	Do not return non-native fish to the Delta from Jul-Sep
Stormwater Management	Reduce contaminant loading into Ulatis Creek Watershed (Cache Slough area) by 50% during winter storm events using constructed wetlands
Rio Vista Research Station	Consolidate existing IEP monitoring and research activities and upgrade refuge population facilities; assumes no population augmentation
Habitat Restoration	11,000 acres of tidal marsh restoration in the north Delta arc
Franks Tract Restoration	Restoration of Franks Tract to establish large areas of emergent marsh; modify flow dynamics

Define Scale and Key Hypothesized Effects of Each Action

							Full	Build-o	ut Scale	e Scena	rio Defi	nition										
Resiliency Strategy Actions	Spat	ial Scale	of infl	uence	w	ater Yea (Tem	ars Imp poral S		ed		e Stages Tempoi				ey Meai Objectiv		E	nviron	mental	Drivers	Affecte	d
	Upper Sacramento	Confluence (inc. Lower SJ)	Suisun Marsh	Suisun Bay	Wet	Above Normal	Below Normal	Dry	Critical	Eggs/Larvae Mar-Jun (Spring)	Juveniles Jun-Sept (Summer)	Sub-Adults Sept-Dec (Fall)	Adults Dec-May (Winter)	Food & Biomass Growth	Predation & Survival	DS Spatial Distribution	Productivity	Turbidity	Vegetation	Salinity	Contaminants	Predators
1. Aquatic Weed Control	Y	Y	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	Y	Y	Y	-	-	-
2. North Delta Food Web Adaptive Management Projects	-	Y	Y	Y	Y	Y	Y	Y	Y	-	Y	Y	-	Y	-	-	Y	-		-	-	-
3. Outflow Augmentation	Y	Y	Y	Y	-	Y	Y	Y	-	Y	Y	-	-	Y	Y	Y	-	-	-	Y	-	-
4. Reoperation of the Suisun Marsh Salinity Control Gates	-	-	Y	-	-	-	Y	Y	-	-	Y	-	-	Y	Y	Y	-	-	-	Y	-	-
5. Sediment Supplementation in the Low Salinity Zone	-	Y	Y	Y	-	-	Y	Y	Y	Y	Y	-	-	-	Y	-	-	Y	-	-	-	-
7. Roaring River Distribution System Food Production	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	-	Y	-	-	-	-	-
8. Coordinate Managed Wetland Flood and Drain Operations in	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	-	Y	-	-	-	-	-
9. Adjust Fish Salvage Operations during Summer and Fall	-	Y	-	-	Y	Y	Y	Y	Y	-	Y	-	-	-	Y	-	-	-	-	-	-	Y
10. Stormwater Discharge Management	Y	-	-	-	Y	Y	Y	Y	Y	-	-	-	Y	Y	-	-	-	-	-	-	Y	-
11. Rio Vista Research Station and Fish Technology Center											N,	/A										
12. Near-term Delta Smelt Habitat Restoration	Y	Y	Y	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	Y	Y	Y	-	-	-
13. Franks Tract Restoration Feasibility Study	-	Y	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	Y	Y	-	-	Y	-	-	-

compass

Define Objectives – What matters for this decision?

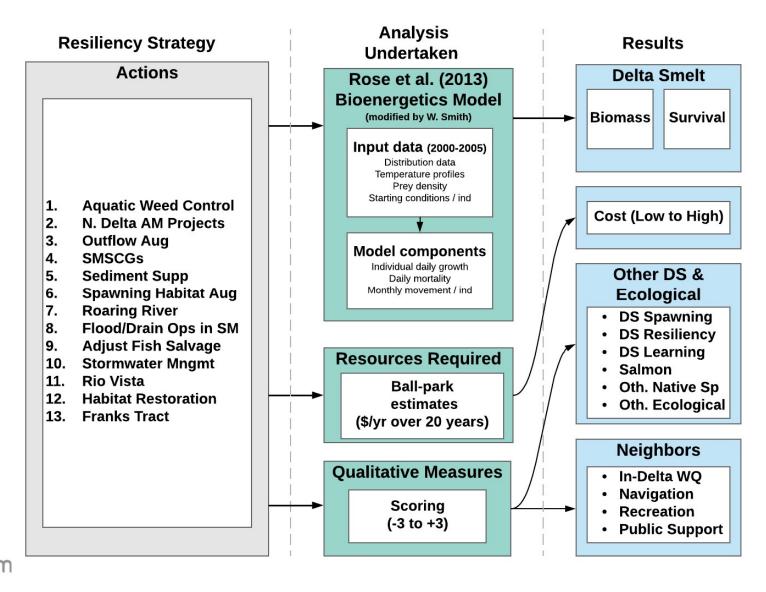
Delta Smelt Population Growth

- Growth (weight)
- Survival (population #s)
- Spawning & recruitment
- Resiliency to random events
- Learning

Other Ecological Considerations

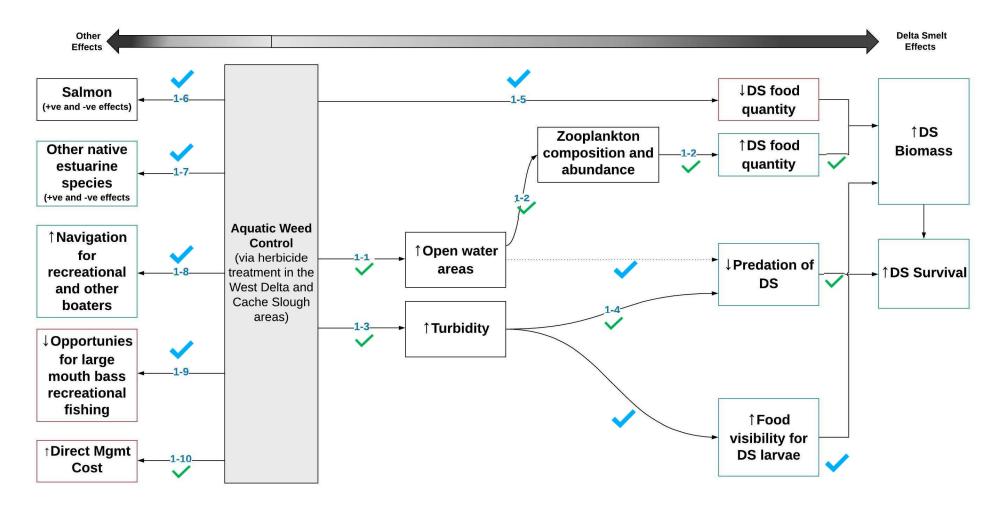
- Salmon
- Other native estuarine species
- Other ecological

Neighbors


- Water quality for in-Delta diversions
- Navigation
- Recreation
- Local public support

Resources Required

 Financial cost (staff time, upfront/ongoing costs, water costs)



Step 4: Methods to Estimate Consequences

10

Example: Aquatic Weed Control

Model/quantify pathway
 Qualitatively score and/or discuss

What did this work achieve?

- Collaborative process with TWG to populate a consequence table (1st iteration)
- Reached agreement among TWG to recommend binning RS actions into categories:
 - 1. Continue as planned
 - 2. Investigate further
 - 3. Reconsider/drop
- Identified key uncertainties to prioritize for research
- Identified other candidate actions for DS

Findings

(Step 4: Consequences and Step 5: Evaluation)

Important Context

- Initial model results based on coarse analyses using readily available information
- Have not modeled all DS effect pathways just 'key' ones
- Sensitivity analyses have not been conducted
- Constructed scales
 - $\,\circ\,$ Ecological considerations: 5-person TWG over 4 hours
 - Neighbor effects: Opinion of 1-2 people/action (i.e. very preliminary and likely incomplete)
- Cost estimates are average of high and low estimates

Given all of the above, please refer to TWG members for guidance on the appropriate interpretation of the meaning/significance of results.

How to Read the Consequence Table Full Build-Out Scale Actions

Certainty in how effects are characterized:

- More certain
- Less certain

			· · · · · ·							ī			
		1. Aq.	2. N.	3. Out-	4.	5. Sed.	7.	8. SM	9.	10.	11.	12.	13.
		Wd.	Delta	flow	SMSCG	Supp.	Roar.	Drain	Fish	Storm	Rio	Hab.	Franks
	Units	Control	Food	Aug.			River	Flood	Salv.	water	Vista	Rest.	Tract
DS growth	% change						1%		1%		n/a		1%
DS survival	% change						1%		1%				1%
DS spawning/recruitment	-3 to +3		0.0		0.4								1.2
DS resiliency	-3 to +3												1.2
DS learning	-3 to +3												1.6
Salmon	-3 to +3		0.1	1.0				1.0			0.3		1.3
Other native spp	-3 to +3				1.Co	nsequ	ences	s / Re	sults				1.3
Other ecological	-3 to +3					0.7	1.0						1.7
Cost/year	\$ million						\$0.2	\$2.5					\$17.5
WQ for in-Delta diversions	-3 to +3												0
Navigation	-3 to +3												-1
Fishing / waterfowl hunting	-3 to +3												-2
Non-consumptive recreation	-3 to +3	3	0	0	0	0	0	0	0	0	0	3	3

Certainty in how effects are characterized:

• More certain

• Less certain

		1. Aq.	2. N.	3. Out-	4.	5. Sed.	7.	8. SM	9.	10.	11.	12.	13.
		Wd.	Delta	flow	SMSCG	Supp.	Roar.	Drain	Fish	Storm	Rio	Hab.	Franks
	Units	Control	Food	Aug.			River	Flood	Salv.	water	Vista	Rest.	Tract
DS growth	% change	12%	34%	0%	0%	7%	1%	34%	1%	0%	n/a	7%	1%
DS survival	% change	11%	13%	0%	0%	7%	1%	11%	1%	0%	n/a	3%	1%
DS spawning/recruitment	-3 to +3	2.4	0.0	0.6	0.4	0.8	0.8	1.6	0.0		n/a		
DS resiliency	tial mod	el resu	lts ba	sed on	i readi	ly avai	lable	inforr	natio	n. _{0.9}			
DS learning	-3 to +3	2.2	2.1	1.4	2.1	2.2	1.4						
Salmon	-3 to +3	Only m	odele	ed key	DS effe	ect pat	hway	′S. _{1.0}	0.0				
Other native spo Metric is th	ne % cha	nge in	avera	ge gro	wth or	surviv	val fro	om a 6	0.3 5-yea	r mod	eled		
Other ecological Cost/year				e perio					\$0.9				
WQ for in-Delta diversions	-3 to +3												
Na Use model results	to comp	are re	ative	perfo	rmanc	e of ac	ctions	for D)S gro	owth a	and s	urviva	al. ₋₁
Fishing / waterfowl hunting	-3 to +3											0	
Non-consumptive recreation	-3 to +3	3	0	0	0	0	0	0	0	0	0	3	3

Certainty in how effects are characterized:

• More certain

• Less certain

	Units	1. Aq. Wd. Control	2. N. Delta Food		4. SMSCG	5. Sed. Supp.	7. Roar. River	8. SM Drain Flood	9. Fish Salv.	10. Storm water	11. Rio Vista	12. Hab. Rest.	
DS growth	% change	12%	34%	0%	0%	7%	1%	34%	1%	0%	n/a	7%	1%
DS survival	% change		13%	0%	0%	7%	1%	11%	1%	0%	n/a	3%	1%
DS spawning/recruitment	-3 to +3		0.0		0.4	0.8					n/a		
DS resiliency	-3 to +3							1.4	0.2				
DS learning	-3 to +3		2.1	eed mo		r.2.2							1.6
Salmon	-3 to +3		0.1	1.0	0.0	0.3			0.0				
Other native spp	-3 to +3												
Other ecological	-3 to +3	Only in	clude	d one	key ef	fect/pa	athwa	y. 1.7	0.3		0.0		
Cost/year			\$4.2				\$0.2	\$2.5					
WQ for in-Data diversion Not predicted	d to incre	ease D	S grov	wth/su	rvival	based	onol	ır çuri	rent c	issum	ption	s. 0	
Fishing / waterfowl hunting	-3 to +3												
Non-consumptive recreation	-3 to +3	3	0	0	0	0	0	0	0	0	0	3	3

For -3 to +3 scales

Certainty in how effects are characterized:			Small adverse		Small		
More certain	<<<===Larger a	adverse impact		No effect		Larger benef	it===>>>
Less certain	-3	-2	-1	0	1	2	3

		1. Aq.	2. N.	3. Out-	4.	5. Sed.	7.	8. SM	9.	10.	11.	12.	13.
		Wd.	Delta	flow	SMSCG	Supp.	Roar.	Drain	Fish	Storm	Rio	Hab.	Franks
	Units	Control	Food	Aug.			River	Flood	Salv.	water	Vista	Rest.	Tract
DS growth							1%		1%		n/a		1%
DS survival	% change						1%		1%		n/a		1%
DS spawning/recruitment	-3 to +3	2.4	0.0	0.6	0.4	0.8	0.8	1.6	0.0	1.5	n/a	2.4	1.2
DS resiliency	-3 to +3	2.8	1.6	1.2	1.4	2.2	0.8	1.4	0.2	0.9	1.3	2.8	1.2
DS learning	-3 to +3	2.2	2.1	1.4	2.1	2.2	1.4	2.0	0.6	1.6	3.0	2.6	1.6
Salmon	-3 to +3	2.3	0.1	1.0	0.0	0.3	0.8	1.0	0.0	1.8	0.3	2.3	1.3
Other native spp	-3 to +3	2.7	2.0	1.7	1.3	1.0	0.7	1.0	0.3	1.7	0.3	3.0	1.3
Other ecological	-3 to +3	3.0	1.3	1.7	1.3	0.7	1.0	1.7	0.3	1.7	0.0	3.0	1.7
Cost/year	\$ million	\$2.3	\$4.2				\$0.2						\$17.5
WQ for in-Delta diversions	-3 to +3											0	0
Navigation	Ecologica	al score	es ar <u>e</u>	anave	erage f	rom T	WG <u>a</u>	ndgu	ests.				-1
Fishing / waterfowl hunting	-3 to +3				0			0					-2
Non-consumptive recreation	-3 to +3												3

Certainty in how effects are characterized:

- More certain
- Less certain

		1. Aq.	2. N.	3. Out-	4.	5. Sed.	7.	8. SM	9.	10.	11.	12.	13.
		Wd.	Delta	flow	SMSCG	Supp.	Roar.	Drain	Fish	Storm	Rio	Hab.	Franks
	Units	Control	Food	Aug.			River	Flood	Salv.	water	Vista	Rest.	Tract
DS growth							1%		1%				1%
DS survCapital and oper	ating cos	sts for	each	action	were a	annual	lized	over a	a 20-y	vear p	eriod	with	1%
DS spawning/ consideration	on of the	e freau	iencv	and di	uratior	n of ea	ch ac	tion o	vert	his pe	riod.		1.2
DS resiliency	-3 to +3	2.8	1.6	1.2	1.4	2.2	0.8	1.4	0.2	0.9	1.3		1.2
DS learning	-3 to +3	2.2	2.1		2.1	2.2	1.4		0.6				1.6
Salmon AV	erages o	f high a	and Id	ow_anr	iual co	st esti	mates	s are s	show	n. _{1.8}			1.3
Other native spp	-3 to +3						0.7		0.3				1.3
Other ecological	-3 to +3												
Cost/year	\$ million	\$2.3	\$4.2	\$46.5	\$9.7	\$3.8	\$0.2	\$2.5	\$0.9	\$7.0	\$6.5	\$17.9	\$17.5
WQ for in-Delta diversions	-3 to +3												0
Navigation	-3 to +3												-1
Fishing / waterfowl hunting	-3 to +3												-2
Non-consumptive recreation	-3 to +3	3	0	0	0	0	0	0	0	0	0	3	3

For -3 to +3 scales Small Certainty in how effects are characterized: adverse Small More certain <<<===Larger adverse impact No effect Larger benefit===>>> benefit impact • Less certain 0 1 2 -3 -2 -1 3

		1. Aq. Wd.	2. N. Delta	3. Out- flow	4. SMSCG	5. Sed. Supp.	7. Roar.	8. SM Drain	9. Fish	10. Storm	11. Rio	12. Hab.	13. Franks
	Units	Control	Food	Aug.			River	Flood	Salv.	water	Vista	Rest.	Tract
DS growth							1%		1%				1%
DS survival	ach neig	hhore	13%	rofloct		7%	1%r	1 1 1 %	1%		n/a		1%
DS spawning/recruitment	ach neig	nuors s	score	reliect	s the t	phillio	IS OI	T-S be	eopie		n/a		1.2
DS resiliency	-3 to +3								0.2				1.2
DS learningThese rows re	ceived t	heleas	t effo	rt – in	cluded	here	for illi	ustrat	<i>ive</i> sp	urpos	es on	y 2.6	1.6
Salmon	-3 to +3		0.1					1.0					1.3
Other native spp	-3 to +3		Broad	der vet	tingna	hahad		1.0	0,3				1.3
Other ecological	-3 to +3		1.3	1.7	ting ne		1.0						1.7
Cost/year	\$ million	\$2.3	\$4.2	\$46.5	\$9.7	\$3.8	\$0.2	\$2.5	\$0.9	\$7.0	\$6.5	\$17.9	\$17.5
WQ for in-Delta diversions	-3 to +3	0	0	0	0	0	0	0	0	1	0	0	0
Navigation	-3 to +3	3	0	0	0	0	0	0	0	0	0	0	-1
Fishing / waterfowl hunting	-3 to +3	0	0	0	0	0	0	0	0	0	0	0	-2
Non-consumptive recreation	-3 to +3	3	0	0	0	0	0	0	0	0	0	3	3

		1. Aq. Wd.	2. N. Delta	3. Out- flow	4. SMSCG	5. Sed. Supp.	7. Roar.	8. SM Drain	9. Fish	10. Storm	11. Rio	12. Hab.	13. Franks
	Units	Control	Food	Aug.		early a	River	Flood	Salv.	water	Vista	Rest.	Tract
DS growth	% change	12%	34%	0%	0%	7%	1%	34%	1%	0%	n/a	7%	1%
DS survival	% change	11%	13%	0%	0%	7%	1%	11%	1%	0%	n/a	3%	1%
DS spawning/recruitment	-3 to +3	2.4	0.0	0.6	0.4	0.8	0.8	1.6	0.0	1.5	n/a	2.4	1.2
DS resiliency	-3 to +3	2.8	1.6	1.2	1.4	2.2	0.8	1.4	0.2	0.9	1.3	2.8	1.2
DS learning	-3 to +3	2.2	2.1	1.4	2.1	2.2	1.4	2.0	0.6	1.6	3.0	2.6	1.6
Salmon	-3 to +3	2.3	0.1	1.0	0.0	0.3	0.8	1.0	0.0	1.8	0.3	2.3	1.3
Other native spp	-3 to +3	2.7	2.0	1.7	1.3	1.0	0.7	1.0	0.3	1.7	0.3	3.0	1.3
Other ecological	-3 to +3	3.0	1.3	1.7	1.3	0.7	1.0	1.7	0.3	1.7	0.0	3.0	1.7
Cost/year	\$ million	\$2.3	\$4.2	\$46.5	\$9.7	\$3.8	\$0.2	\$2.5	\$0.9	\$7.0	\$6.5	\$17.9	\$17.5
WQ for in-Delta diversions	-3 to +3	0	0	0	0	0	0	0	0	1	0	0	0
Navigation	-3 to +3	3	0	0	0	0	0	0	0	0	0	0	-1
Fishing / waterfowl hunting	-3 to +3	0	0	0	0	0	0	0	0	0	0	0	-2
Non-consumptive recreation	-3 to +3	3	0	0	0	0	0	0	0	0	0	3	3

For -3 to +3 scales

-3

Certainty in how effects are characterized:

• More certain

Less certain

Color coding shows highest to lowest values within each row (Green = benefit; Red = cost).

-2

<<<===Larger adverse impact

Small

adverse

impact

-1

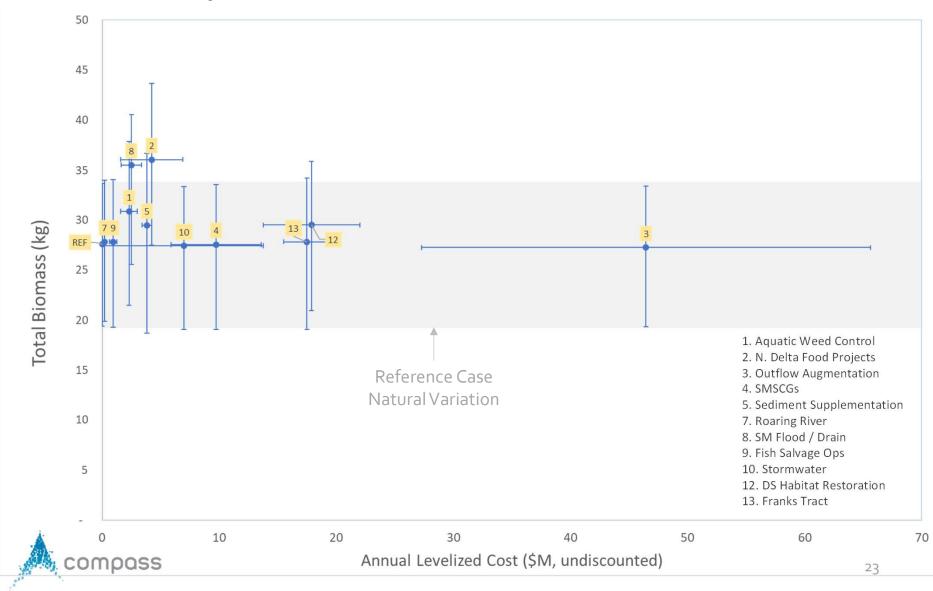
3

Larger benefit===>>>

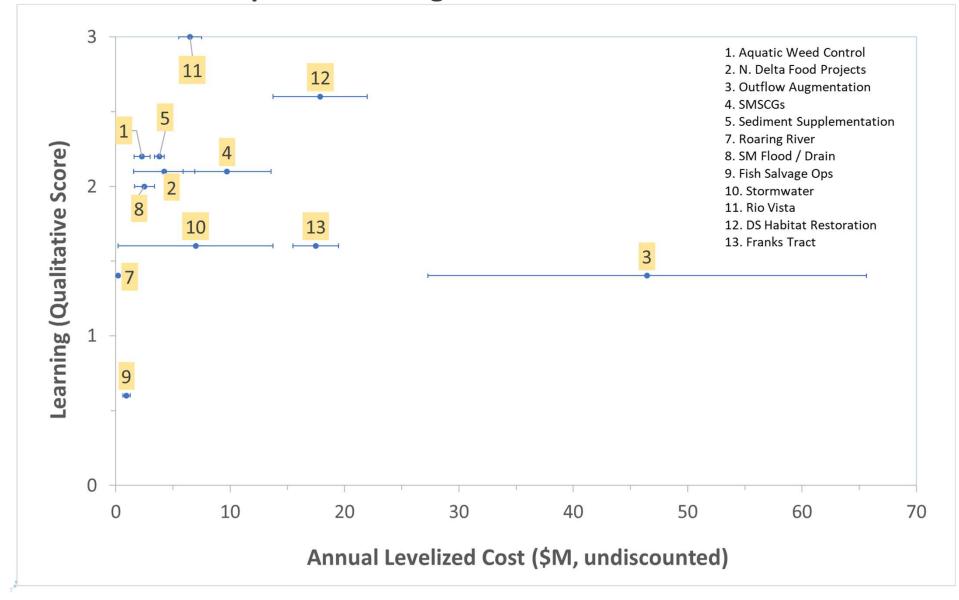
2

Small

benefit


1

No effect


0

Benefits vs. Costs

Example 1: Total Biomass vs. Annual Levelized Cost

Benefits vs. Costs Example 2: Learning vs. Annual Levelized Cost

Suggested Interpretation of First Iteration

Continue as planned

- 2. North Delta Food Web
- 4. Suisun Marsh Salinity Control Gates
- 8. Managed Wetland Flood/Drain Operations
- 7. Roaring River Distribution System
- 12. Near-term DS Habitat Restoration
- 11. Rio Vista Research Station and FTC

Investigate further

- 1. Aquatic Weed Control
- 3. Outflow Augmentation
- 5. Sediment Supplementation in the LSZ
- 10. Stormwater Management
- 13. Franks Tract

Reconsider

- 6. Spawning Habitat Augmentation
- 9. Adjust Fish Salvage Operations

Certainty in how effects are characterized:

- More certain
- Less certain

Continue as planned?

Higher priority actions: relatively high confidence in relatively high benefit / cost ratios

Action	Rationale for being in this category
2.North Delta Food Web	High food and survival benefit, low cost
8. Wetland Flood and Drain Ops	High food and survival benefit, low cost
12.DS Habitat Restoration	Long term habitat benefits, despite higher costs
11.Rio Vista Research Station / FTC	 High learning, despite higher costs; Also potential for population augmentation (not evaluated in this exercise)
4. SMSCGs	 Uncertain benefit but low cost* and learning potential
7. Roaring River Food Production	 Lower benefit but low cost, synergy with managed wetlands

Certainty in how effects are characterized:

• More certain

• Less certain

*Low cost on account of new analysis received after production of the 1st iteration consequence table that the SMSCG would likely not require 60 TAF outflow augmentation.

Investigate further?

Actions that warrant further analysis before benefit / cost ratio can more confidently be judged

Action	Rationale for being in this category
5. Sediment Supplementation	 Turbidity benefits and costs moderate Hurdles include permitting and sourcing sediment
1. Aquatic Weed Control	 Many ecological benefits at moderate cost Questions about: feasibility at large scale and managing risk perception
3. Outflow Augmentation	 Action cost is relatively high Initial bioenergetics modeling shows low benefit, however other potentially important pathways remain unexplored, and substantial uncertainties exist regarding the fish distribution response to the action
10. Stormwater Mgmt	Specific benefits poorly understood, high cost if land is purchased
13. Franks Tract	 Modest benefits / high cost and negatives to stakeholders May be other pathways to explore

Certainty in how effects are characterized:

More certain

• Less certain

Reconsider?

Relatively high confidence that there would be low or no benefit

Action	Rationale for being in this category
6. Spawning Habitat Augmentation	 Adding sand unlikely to make effective spawning habitat
9. Adjust Fish Salvage Operations in Summer and Fall	Likely minimal benefit

Certainty in how effects are characterized:

• Less certain

What's next?

Proposed Next Steps

Wrap Up this Demo Project with TWG

• Document this process (mostly complete)

Proposed Follow-up Process

• 2-day planning workshop to develop a process plan

The Demo...

Did:

- Examine proposed RS Actions
- Give guidance on prioritizing actions in the short-medium term
- Collect input and perform analyses with a small TWG

Did not:

- Dive deeply into underlying debates about cause and effect
- Create a long-term framework for implementing/testing actions
- Perform extensive engagement with a wide range of parties

However, these could be next steps in a follow-up process that could ultimately look like...

A First Step: Scoping Workshop?

Purpose: To scope an SDM process to identify and evaluate a comprehensive set of strategic actions to significantly benefit DS

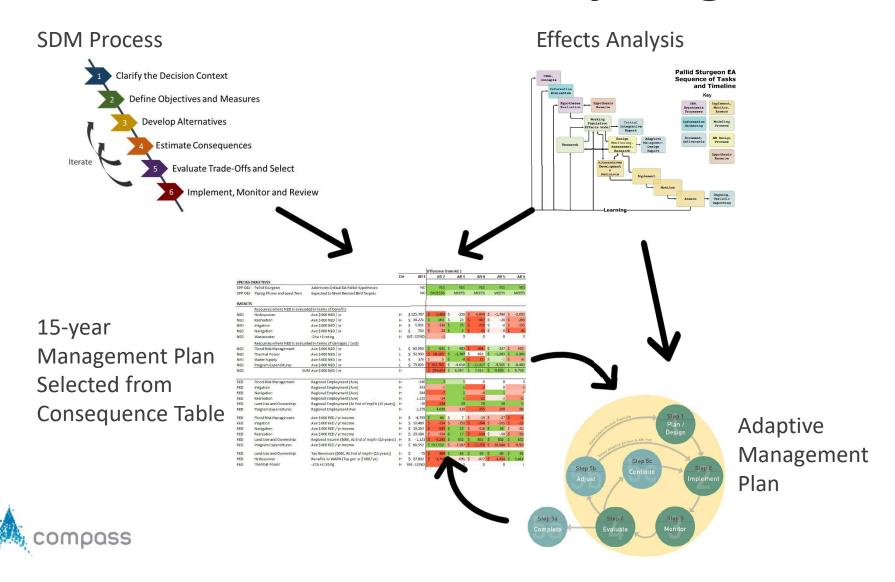
- 2-day workshop
- First half day with senior decision-makers
 - Work through first steps of SDM
 - Discuss: needs, scale, timeline, resources
 - Share example: Missouri River AM Plan
- Next 1.5 days working sessions
 - Design an integrative process with managers, program leads, and stakeholders

A First Step: A Planning Workshop?

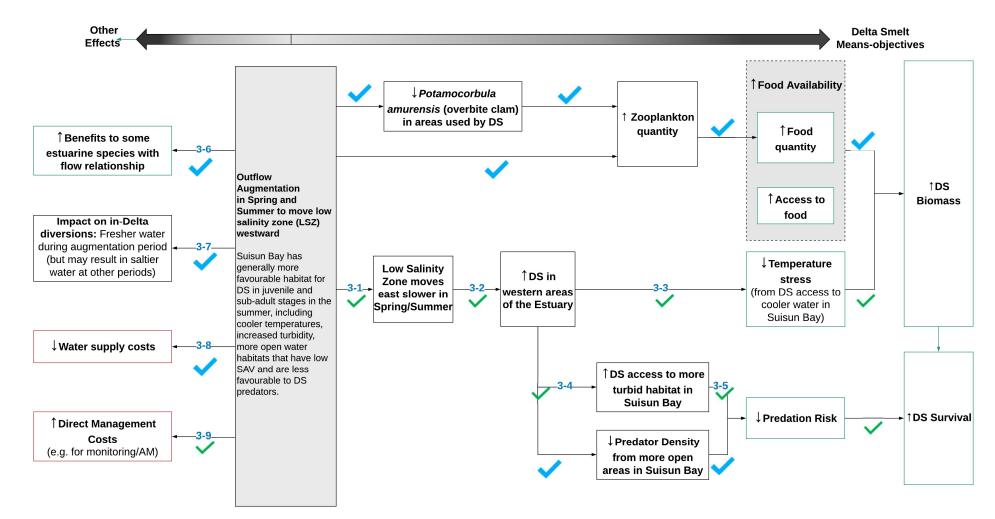
Purpose: To scope an SDM process to identify and evaluate a comprehensive set of strategic actions to significantly benefit DS

Present results of the workshop to CAMT + Policy Group to consider proposal

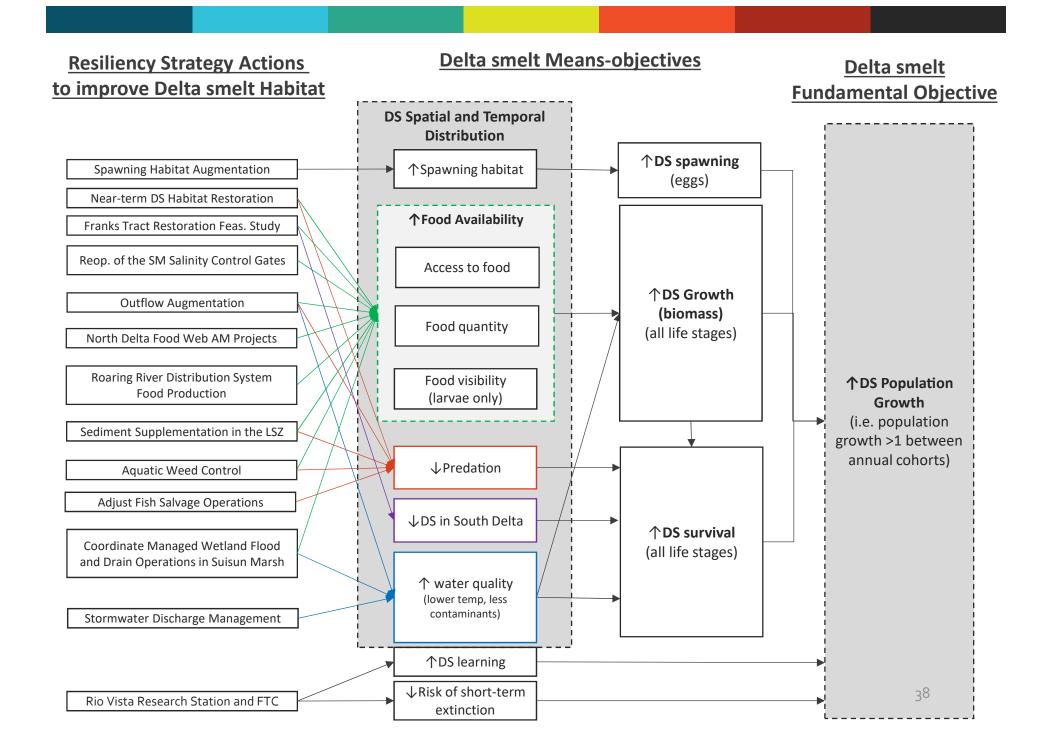
Extra Slides


Example: Missouri River Recovery Program

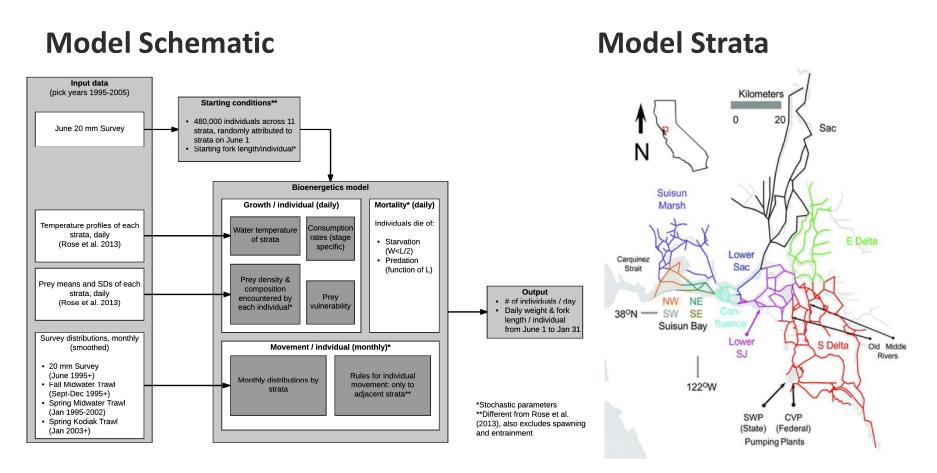
- USACE
- 3 ESA-listed spp
- Major science uncertainties
- EIS on actions
- MRRIC engagement
- A hybrid of SDM and standard processes



Example: Missouri River Recovery Program



Outflow Augmentation



Model/quantify pathway
 Qualitatively score and/or discuss

Delta Smelt Bio-energetics Model

Modified from Rose et al. (2013)

Model coded and run by: Will Smith (FWS)

. 0