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1) Changes in phytoplankton abundance and
community structure (light, nutrients, reduction
in habitat — off axis nurseries)

2) Low phytoplankton abundance due to grazing
(clams) ; loss of food resource

3) Increased predation of smelt due to changes in
turbidity, loss of habitat; reduced fish
recruitment
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Figure 23 Conceptual diagram of some of the hypothesized changes in the food chain from phytoplankton to fish that have occurred in the Sacramento-San
Joaquin Estuary over the past 30 years. Each of these hypothesized food chains has different dominant nitrogen forms or amounts relative to phosphorus. This
conceptual model is intended simply to highlight some of the major flows of energy and materials and does not include all organisms, pathways or flows. The size

of the symbols is meant to infer relative importance.

Glibert 2010
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Figure 23 Conceptual diagram of some of the hypothesized changes in the food chain from phytoplankton to fish that have occurred in the Sacramento-San
Joaquin Estuary over the past 30 years. Each of these hypothesized food chains has different dominant nitrogen forms or amounts relative to phosphorus. This
conceptual model is intended simply to highlight some of the major flows of energy and materials and does not include all organisms, pathways or flows. The size
of the symbols is meant to infer relative importance.

A Brief List of Food Web Model
Parameters Needed

1. Light

2. Nutrients
3. Turbidity
4. Algae
5
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. Zooplankton
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Figure 23  Conceptual diagram of some of the hypothesized changes in the food chain from phytoplankton to fish that have occurred in the Sacramento-San
Joaquin Estuary over the past 30 years. Each of these hypothesized food chains has different dominant nitrogen forms or amounts relative to phosphorus. This

| model is intended simply to highlight some of the major flows of energy and materials and does not include all organisms, pathways or flows, The size
of the symbols is meant to infer relative importance.
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Nitrate Variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
(Satlantic ISUS nitrate analyzer)
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Nitrate Variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
(Satlantic ISUS nitrate analyzer)
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Nitrate Variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
(Satlantic ISUS nitrate analyzer)
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Combination of discrete and in situ data show
high biological activity in the SJR, but no
evidence for direct link between NO;
concentrations and chlorophyll not apparent.
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Nitrate Loads — SJR - Induced Errors

Difference in instantaneous and cumulative

. . . Daily Load (kg nitrate / day) % Difference
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SOLUTION: Goals and Objectives
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A Brief List of Food Web Model

Parameters Needed

. Light

. Nutrients

. Turbidity/Particle Size/Composition
Algae

. Zooplankton

. Fish



Capabilites

A Brief List of Food Web Model
Parameters Needed

Light

Nutrients

Turbidity

Algae

Zooplankton

Fish

oOuneswWNRE

All indicators shown in red in the
forthcoming lists can be observed
continuously




sophisticated instrumentation and

We are developing and calibrating
inexpensive methods from more
techniques...
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X2 Project
e ~25 stations per month
* Algal concentration
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Phytoplankton productivity Want to

Measure

e Light limitation inhibits phyto growth
e Light attenuation

e Chla

* Growth rates lower due to NH,* * NO;

**PO43—

**NH4+

* Primary

. productivity (PP)
® d\g‘@@ Phyto

: ‘ ® Community
'Hﬁ:‘. ‘if%
® M' * Phyto Phys.

O Status

il el * PP location

 Blooms don’t form due to grazing, etc.

 Reduced zooplankton food encounter rate

* Lower zooplankton abundance and quality
 Lower energy supply to fish

/ * PP timing



K, (PAR, m'})

Phytoplankton productivity

ELEMENTS: Light availability, turbidity, euphotic zone depih,
Chl a, nutrients

GOALS: Enhance capability of productivity models,
assess off-channel production
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We can utilize surface turbidity to estimate light attenuation across the entire SFE and Delta




Euphotic Zone Depth (m)

Phytoplankton productivity

ELEMENTS: Light availability, turbidity, euphotic zone depth,
Chl a, nutrients

GOALS: Enhance capability of productivity
models, assess off-channel
production, remote sensing, trends, etc.
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Phytoplankton productivity

ELEMENTS: Light availability, turbidity, euphotic zone depth,

Chl a, nutrients

GOALS: Enhance capability of productivity
models, assess off-channel
production, remote sensing, trends, etc.
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Phytoplankton productivity

ELEMENTS: Light availability, turbidity, euphotic zone depth,
Chl a, nutrients

GOALS: Enhance capability of productivity
models, assess off-channel
production, remote sensing, trends, etc.
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Nutrients change the food web

e Changesin N and P supply, Nitrogen
forms, and N:P ratios cause changes in
phytoplankton community

e (Cascading changes in zooplankton
community, trophic dynamics

 Net resultis change in energy supply and
., form to fish
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3 \| H4+
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Primary
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Community

Phyto Phys.
Status

PP location
PP timing



Nitrate Variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
(Satlantic ISUS nitrate analyzer)
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Combination of discrete and in situ data show high biological activity
in the SJR, but no evidence for direct link between NO;
concentrations and chlorophyll not apparent.



Phytoplankton productivity

ELEMENTS: Light availability, turbidity, euphotic zone depth,
Chl a, nutrients

GOALS: Enhance capability of productivity
models, assess off-channel
production, remote sensing, trends, etc.
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Particle Size and Quality

ELEMENTS: Particle size distribution, source, type
organic content, fraction of algal origin

GOAL.: |dentify locations and times where algal
conditions are favorable to specific zooplankton communities
Where does the food go?
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Why measure
continuously?

Nitrate (uM)

 Understand frequency and location of favorable habitat
conditions

 Understand and quantify processes in a tidal setting
e |dentify long term trends

25

L 20
S Y
A | 1.0

- 0.5

00

* Link discrete sampling to antecedent and current conditions

e Continuous monitoring is more affordable and efficient

* Be able to adapt your funded research project to current
conditions = less missed opportunities, greater research
success

Water depth (m)



MOST CAN BE MEASURED IN
Need to know SITU CONTINUOUSLY and
INEXPENSIVELY

Light Light
NO; attenuation (now d?ing it......
**XNH,* Turbidity expensively and

discretely)
**PO43' DOM

PP amt.
PP location
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Figure 23 Conceptual diagram of some of the hypothesized changes in the food chain from phytoplankton to fish that have occurred in the Sacramento-San
Joaquin Estuary over the past 30 years. Each of these hypothesized food chains has different dominant nitrogen forms or amounts relative to phosphorus. This
concepltual model is intended simply to highlight some of the major flows of energy and materials and does not include all organisms, pathways or flows. The size
of the symbols is meant to infer relative importance.



Ancillary Benefits/Other uses!!!!!

Information about sources and long term changes in...

Byproducts

Nutrients in > Algal bloomes,
reservoirs production of
DOC, HABs

Track mercury,

Mercury — methyl-mercury
through

ecosystems



“Discrete monitoring programs must take into account
variability on scales shorter than the (discrete) sampling
interval because of potential uncertainty and bias ...

...Monitoring programs must, at some point, include focused,
higher-frequency studies to understand the effects of shorter
time scales...

...Given the scope and pace of change occurring in the world’s
estuarine-coastal ecosystems, the imperative for monitoring
data and their analysis has never been greater”

Cloern and Jassby 2012



