Summary of Central Valley Project and State Water Project Effects on Delta Smelt

Frederick Feyrer
U.S. Bureau of Reclamation

on behalf of the OCAP Technical Support Team:

U.S.	Fish	and	Wil	ldlife	Service	
$\mathbf{U}_{\cdot}\mathbf{U}_{\cdot}$		ини		MIII		

Cay Goude

Ryan Olah

Steve Detwiler

Victoria Poage

Derek Hilts

U.S. Bureau of Reclamation

Mike Chotkowski

Lenny Grimaldo

Fred Feyrer

Shane Hunt

California Department of Fish and Game

Matt Nobriga

U.S. Environmental Protection Agency

Bruce Herbold

U.S. Geological Survey

Pete Smith

U.C. Davis

Michael Johnson

Background

- Sacramento-San Joaquin Delta is highly complex
- Decline of delta smelt cannot be solely explained by CVP/SWP operations

Background

- Sacramento-San Joaquin Delta is highly complex
- Decline of delta smelt cannot be solely explained by CVP/SWP operations
- Direct effects entrainment
- Indirect effects hydrodynamic conditions

Background

- Sacramento-San Joaquin Delta is highly complex
- Decline of delta smelt cannot be solely explained by CVP/SWP operations
- Direct effects entrainment
- Indirect effects hydrodynamic conditions

Effects analysis organized by season and life stage

Quantitative Life Cycle Model Under Development, . . . still is

Individual-based model

Kenny Rose Wim Kimmerer

Matrix models

Bill Bennett

Particle tracking model Stephen Monismith

Winter:

Entrainment of migratory and spawning adults

Winter:

Entrainment of migratory and spawning adults

Spring & Summer:

•Entrainment of larvae and juveniles

Winter:

 Entrainment of migratory and spawning adults

Spring & Summer:

•Entrainment of larvae and juveniles

Fall:

Rearing habitat of maturing pre-adults

Entrainment of migratory and spawning adults

• First flush and turbidity trigger migration (Grimaldo et al. 2009)

Entrainment of migratory and spawning adults

- First flush and turbidity trigger migration (Grimaldo et al. 2009)
- Salvage patterns reflect Old and Middle River flow (Kimmerer 2008; Grimaldo et al. 2009)

Entrainment of migratory and spawning adults

- First flush and turbidity trigger migration (Grimaldo et al. 2009)
- Salvage patterns reflect Old and Middle River flow (Kimmerer 2008; Grimaldo et al. 2009)
- Variable cumulative proportional loss of population (Kimmerer 2008)

Model Scenarios

Details: BiOp Page 204

Entrainment of migratory and spawning adults

 Effects of modeled CVP/SWP operations (FWS 2008):
 A) Increased frequency of more negative Old and Middle River flow

Entrainment of migratory and spawning adults

- Effects of modeled CVP/SWP operations (FWS 2008):
 - A) Increased frequency of more negative Old and Middle River flow
 - B) Increased entrainment

Entrainment of larvae and juveniles

Entrainment of larvae and juveniles

- Salvage patterns reflect Old and Middle River flow (Kimmerer 2008; Grimaldo et al. 2009)
- Variable cumulative proportional loss of population (Kimmerer 2008)

Entrainment of larvae and juveniles

 Effects of modeled CVP/SWP operations (FWS 2008):
 A) Increased frequency of more negative Old and Middle River flow in wet and above normal years

Entrainment of larvae and juveniles

- Effects of modeled CVP/SWP operations (FWS 2008):
 - A) Increased frequency of more negative Old and Middle River flow in wet and above normal years
 - B) Increased entrainment in wet and above normal years

Rearing habitat of maturing pre-adults

Rearing habitat of maturing pre-adults

 Delta smelt habitat is related to salinity and turbidity (Bennett 2006; Feyrer et al. 2007; Kimmerer et al. 2009)

Feyrer et al. (2007)

Rearing habitat of maturing pre-adults

- Delta smelt habitat is related to salinity and turbidity (Bennett 2006; Feyrer et al. 2007; Kimmerer et al. 2009)
- Suitable habitat is related to X2 (Feyrer et al. 2008)

Rearing habitat of maturing pre-adults

Effects of modeled CVP/SWP operations (FWS 2008):
 A) X2 shift upstream

Rearing habitat of maturing pre-adults

- Effects of modeled CVP/SWP operations (FWS 2008):
 - A) X2 shift upstream
 - B) Habitat space reduced

Rearing habitat of maturing pre-adults

- Effects of modeled CVP/SWP operations (FWS 2008):
 - A) X2 shift upstream
 - B) Habitat space reduced
 - C) Loss of variability

- 1 wet
- 2 above normal
- 3 below normal
- 4 dry
- 5 critical

Summary

Winter (December-March) - Entrainment of migratory and spawning adults

- A) Increased frequency of more negative Old and Middle River flow
- B) Increased entrainment

-In all but critical years

Spring & Summer (April-June) - Entrainment of larvae & juveniles

- A) Increased frequency of more negative Old and Middle River flow
- B) Increased entrainment

-In wet and above normal years

Fall (September-December) - Rearing habitat of maturing pre-adults

- A) X2 shift upstream
- B) Habitat reduced
- C) Loss of variability

Additional Considerations

- Recent high exports and entrainment coincident with POD (IEP 2008)
- Abundance negatively related to exports *
 (Bennett 2005; Thompson et al. 2010)
- Entrainment is not a substantial source of mortality in every year (Bennett 2005; Manly and Chotkowski 2006; IEP 2008; Kimmerer 2008)
- Disproportionate cohort mortality (Bennett 2005)
- Weak statistical link between habitat and abundance (Feyrer et al. 2007)