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Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and
data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now
represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration
across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberin-
frastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well
as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of
spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing
empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of
both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing,
sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights

and knowledge.
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he term cyberinfrastructure (CI)

was first coined by a National

Science Foundation Blue-Ribbon

Committee (1) to reflect how the
traditional modes of scientific research
(e.g., experimentation in the laboratory,
observation in the field, processing/ana-
lyzing on a single calculator or computer,
and even calculations on the back of an
envelope) are being enhanced and even
revolutionized by the integrative capa-
bilities of high-performance computers,
storage and visualization tools for very
large datasets, digitally enabled sensors
and instruments in the environment, vir-
tual organizations for collaborative prob-
lem solving, and interoperable suites of
software services and tools (2). The world
of scientific publishing is being trans-
formed as part of CI evolution (3). CI,
therefore, represents a paradigm shift in
scientific research that has facilitated col-
laboration across distance and disciplines,
thus enabling quick and efficient scientific
breakthroughs that might not be possible
otherwise.

Examples include the discovery of
abrupt transitions in Earth’s climate and
ecosystem dynamics, previously unknown
properties of minerals at extreme tem-
peratures and pressures deep within the
Earth, simulations of the development of
the early universe, discoveries and insights
through improved ocean models, under-
standings of individual and group behavior
and its relationship to social, economic,
and political structures, and creation of
a human linkage genetic map (2, 4, 5).
As Benioff et al. (6) note, computation,
along with theory and experiment, has
become “the third pillar” of science and
engineering (6). Additionally, making
scientific discoveries requires the compu-
tational ability to synthesize and analyze
very large datasets that are integrated
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across biological, physical, and social sci-
ences and engineering and across the
science—technology interface, where Hey
et al. (5) name “data-intensive science”
as the “fourth paradigm.” Indeed, CI has
become more than just hardware and
software but its own evolving area of re-
search in the realm of data-intensive sci-
ence and digital libraries (5-9), with many
countries investing hundreds of millions of
dollars in CI research and development
(10, 11) and calls coming from diverse
scientific communities arguing the urgent
need for further levels of CI investment
(12, 13). Hey et al. (5) point out that, al-
though we have attained high-perfor-
mance computing at affordable cost and
have made good progress on simulation
tools, many challenges remain in effec-
tively integrating multiple field observato-
ries containing thousands of instruments,
involving millions of users and petabytes
of data, built on a true data grid with the
ability to analyze data on that grid with
sophisticated data analysis.

Spatial CI is an emerging term in the
literature (14-16), and it is defined as
a specific type of CI that synergistically
integrates the capabilities of CI, geo-
graphic information systems (GIS) (17,
18), and spatial analysis (19, 20) for geo-
spatial problem solving and decision
making. By spatial or space, we mean both
real, physical space (i.e., on the surface
of the Earth, in the atmosphere, or under
the ocean) and virtual space (e.g., digital
worlds or understanding how and where
computers are connected worldwide).
Nearly all of our knowledge about the
world can be classified according to space
(location, area, distance, or spatial inter-
action) as well as time. However, although
time is divided into the globally under-
stood units of seconds, hours, years, and so
forth, spatial units and associated rela-
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tionships are much more complex, multi-
dimensional (e.g., x, y, and z), at multiple
scales and resolutions, often heteroge-
neous (even in the representation of

a single variable), and always changing
over time. Without a clear understanding
of space, any associated models, struc-
tures, and hypotheses may be erroneous
(especially those about relationships
among variables).

In particular, the complexity of geo-
graphic space poses significant compu-
tational and intellectual challenges in
distributed spatial data access, sharing, and
analysis, government-sponsored spatial
data information infrastructures (21), and
the geospatial semantic web (22) (i.e.,
locating and integrating information with-
out human intervention, including pro-
viding the ability to search for geographic
information within web pages), all of
which are part of a spatial CI. However,
many of these challenges are already well-
known to those working on spatial data,
and a variety of approaches not involving
spatial CI has arisen to address these
challenges. Spatial CI is going beyond
these existing approaches by anchoring
solutions in more sophisticated thinking
about the representation and implications
of space coupled with the latest in so-
phisticated mathematical and statistical
models (23-26) and forging more intimate
collaborations between computer and
information science and the domain
disciplines of geography, geology and
geophysics, oceanography, ecology, envi-
ronmental engineering and sciences, and
social sciences to name a few (5, 8, 27, 28).
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Such cross-disciplinary collaborations are
making possible new knowledge systems
that are leading to, at long last, a partial
realization of a “Digital Earth,” as first
envisioned by Vice President Al Gore (29)
and now epitomized in products such as
Google Earth, Microsoft Bing Maps, and
National Aeronautics and Space Admin-
istration (NASA) World Wind.

The deluge of spatial data collected at
an accelerated pace in the foreseeable
future from sensor networks, satellites, and
even cell phones continues to be driven by
the tremendous needs of the aforemen-
tioned domains and cannot be well used or
well-understood unless it can be properly
managed, analyzed, and shared through
spatial CI. The dynamic nature of the Earth
system (e.g., waves, tides, atmospheric
turbulence, and movements in the Earth’s
crust) further complicates our efforts to
accurately and precisely measure the sys-
tem. Massive datasets are common in the
spatial analysis of human systems as well,
including population and transportation
systems, risk assessment, disease vectors,
human mobility, and much more. Spatial
analysis (broadly including spatial model-
ing) itself has traditionally encompassed
a variety of approaches, including but not
limited to spatial statistics (30, 31), heu-
ristics and optimization (32, 33), and sim-
ulation for spatial problem solving and
decision making (34, 35). These methods
have been extensively applied in many
fields (36-39) but have been difficult
to implement for large- and multiscale
problems that are computationally inten-
sive and require collaborative input. This
is a limitation that has existed despite the
advances already made to deal with the
challenges associated with the complexity
of geographic space mentioned earlier.
However, spatial CI promises to remove
this limitation and thus, transform spatial
analyses into powerful and accessible
computational utilities for enabling wide-
spread scientific breakthroughs. Spatial
Cl is also proving invaluable in the esti-
mation of errors that propagate from
measurements through the analyses, and it
is facilitating the development of better
models for error representation, propaga-
tion, and management throughout large
distributed computational networks (40).

The articles in this Special Feature ad-
dress how the coupling of CI with spatial
thinking and geographic approaches offers
a promising path forward for solving sci-
entific problems and improving decision-
making practices of significant societal
impact (e.g., assessing impacts of global
climate change, understanding the com-
plexity of coupled human-natural systems,
sustaining ecosystem services, preserving
and accessing digital resources in human-
ities and social sciences, and managing
transportation infrastructure). They are
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far from inclusive of all aspects and cur-
rent interests of spatial CI, because the
field is growing quickly. However, they are
representative of current research ad-
dressing longstanding problems of the
complexity of spatial datasets and spatial
analysis as well as the necessity and ben-
efits of sharing spatial data flexibly and
securely. This research highlights some of
the discoveries and insights that can be
gained, and these results could not have
readily occurred without spatial CI.

Spatial Principles

The Special Feature begins with a technical
treatment by Yang et al. (41) that exam-
ines the spatial principles governing

the interaction of different parameters
and phenomena in a variety of physical
geographic studies (e.g., of the Earth’s
lithosphere, hydrosphere, atmosphere,
pedosphere, and global flora and fauna
patterns). Chief among them is the de-
velopment of architecture and algorithms
for distributed geographic information
processing within a spatial CI (drawing in
part on spatial CI theory introduced by
Wang and Armstrong) (24) to enhance the
understanding of ecosystem dynamics and
improve the forecasting of the onset and
extent of dust storms in the US southwest.
As a result of the experiments, scientists
were able to predict the onset of dust
storms at higher resolutions (3 x 3 km)
over longer time periods (5-10 d).

Physical Science Applications

Helly et al. (40) describe the evolution of a
set of methods and software tools to in-
tegrate multiscale, -source, and -disciplin-
ary oceanographic data over several recent
research cruises to the Antarctic. Their
initial goal was to investigate several sci-
entific hypotheses about the movement of
sea ice and meltwater plumes from ice-
bergs, but an important parallel effort
was the creation of a near real-time geo-
spatial decision-support framework. As
they constructed a spatial CI to support
this framework, they were led to the de-
velopment of a sampling scheme that was
optimized to capture smaller scales of in-
terest with respect to the broader scale
of the study area. This sampling strategy
overcame the limitations of the conven-
tional sampling methods used previously
(i.e., using a research ship as a static
platform for sampling a single parameter
on a station by station basis), thereby al-
lowing for more rapid characterization of
the surface of the ocean using multiple
data streams at sea and in outer space and
simultaneously over multiple spatial and
temporal scales. Thus, without the spatial
ClI, Helly et al. (40) would not have been
able to make direct observation and
characterization of meltwater plumes from
individual icebergs and would not have

been able to effectively integrate these
individual results with regional- and
global-scale data. The results lend insights
as to the influence of meltwater from
icebergs on carbon flux from the surface of
the ocean to sediments on the ocean floor
as well as to the role that icebergs play
in controlling biological productivity in the
Weddell Sea. Their results also illustrate
the importance of spatial CI in the overall
scientific enterprise and identify key ar-
chitectural and design considerations in
the development of current and future
Earth-observing systems, especially as
oceanographers and other Earth scientists
move into an era of petascale computing.

From Physical to Social Sciences and
the Humanities

A goal of this Special Feature is to show
that spatial CI is not only about using
hardware and software or enabling the
physical sciences but about distributed
knowledge communities that serve the
needs of the social sciences and humanities
as well as the multiple stakeholders and
decision makers of citizen groups from
differing social, economic, and political
backgrounds. Building a CI is also very
much a social as well as a scientific en-
deavor. As such, Sieber et al. (42) report on
a spatial CI incorporating the China Bio-
graphical Database (the largest in the
world), the China Historical Geographical
Information System (part of China’s orig-
inal Electronic Cultural Atlas Initiative),
and the McGill-Harvard-Yenching Library
Ming Qing Women’s Writings database.
The study focuses in general on a CI for
humanities data, and specifically, on a
spatial CI that aids research on Chinese
women writers, their kinship networks,
their publishing venues, and their literary
and social communities. The article pro-
vides a critical examination of and rec-
ommendations on related issues of con-
flicting data that researchers may not
necessarily want to eliminate from differ-
ing data models and geographic scales.
This case study shows the value of spatial
CI in removing difficulties arising from
spatial and also multilingual, biographical,
and temporal ambiguities in these data-
bases, solutions that, again, would not be
possible without spatial CL

Buetow (4) notes that, although team or
big science will continue to be necessary
to achieve research goals, the small in-
dependent investigator is still “the engine
of innovative research” and the wide-
spread adoption of CI will allow the two
approaches to blend harmoniously. Poore
(43) expands on this theme in a final
perspectives article on the needs and
contributions of individual users within
a spatial CI. Poore (43) notes that, in
particular, as human geographers and
other social scientists as well as geographic
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information scientists actively participate
in spatial CIs as users, there is a great
opportunity to make spatial CI a truly
user-centered enterprise. Spatial CI
should make room for not only the scien-
tists who will use cybertools to collaborate
at a distance but also the educators who
will teach with CIs. This also applies to
citizen scientist users who will contribute
data and insights to CI projects on some of
the most important scientific questions of
the day, such as global climate change.

Concluding Perspective

Citizen scientists may, along with pro-
fessional scientists, increasingly participate
in the now ubiquitous cloud computing,
which uses service-oriented architecture to
control the life cycle of virtual machines
and data archives for everything from one’s
personal address book to the largest of
multidimensional, multidisciplinary scien-
tific modeling systems. However, rather
than federating autonomous entities
(computing centers) into virtual organ-
izations as computational grids do, clouds
(Microsoft, Amazon, and Google) instead
focus on delivering infrastructure as a ser-
vice, software as a service, and so on. Huge
commercial investments in clouds make
it likely that these systems will dominate
large-scale computing hardware and soft-
ware in the next decade (44, 45). Spatial
CI is an important subset of the more
general CI, spanning both the computa-
tionally intense and interdisciplinary use
requirements such as service hosting, vir-
tual computing environments, and virtual
datasets. The special requirements of
spatial CI are a good match for the many
common capabilities of clouds, thus war-
ranting further fundamental and empirical
research.

Indeed, the notion that spatial is special
within CI introduces several interesting
research challenges for physical and social
scientists alike. Many geographic applica-
tions are interdisciplinary and involve
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multiple stakeholders and decision-makers
who have diverse social, economic, and
political backgrounds, thereby making
collaboration critical but challenging.
For example, how do we effectively and
securely share and integrate spatial data,
information, and analytical methods to
develop and sustain evolving geographic
knowledge? How do we facilitate collabo-
rative spatial problem solving and decision
making through virtual organizations?

Given the promise of spatial CI, for
some, the effort in mastering it may still not
be balanced by the apparent benefits,
suggesting that the technology will always
be the reserve of a highly technical group of
experts. What will it take to popularize
spatial CI beyond these experts, especially
if it is to benefit the social sciences and
humanities? Perhaps spatial CI will follow
the path of GIS and eventually become as
transparent as GIS is becoming in the
world of Google Maps and Google Earth.
Studies such as those by Yang et al. (41)
and Poore (43) seek to distill the princi-
ples of spatial CI into simpler concepts
that lend more obvious value to a broader
range of users. Another approach may be
to deal with conceptually and computa-
tionally unmanageable problems by di-
viding them spatially, understanding the
resulting pieces, and then stitching the
results back together. This divide and
conquer approach, initially popularized in
the literature of computational geometry
(46), mirrors the way that society often
solves its spatial problems. In the context
of spatial CI, this implies spatially het-
erogeneous data and spatially explicit
consideration for parallel and distributed
processing within individual high-perfor-
mance computers and/or across the grid
as well as clouds.

Although this Special Feature provides
a small sampling of a much broader sci-
entific and engineering enterprise, we hope
that it will help to elucidate some impor-
tant issues and research questions, thereby
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accelerating scientific progress in this
emerging area. As the size of spatial
datasets and the complexity of spatial
analysis and modeling continue to increase
and the need for virtual collaboration in
scientific research becomes compelling,
the transformative research to establish
user-centric, efficient, and extensible spa-
tial CI becomes ever more important and
timely. The intellectual merits of spatial
CI stem from the complexity of the chal-
lenges, the dangers inherent in not fixing
the errors that may propagate, the pro-
found need to develop solutions that will
benefit many fields of societal relevance,
the continuing vision of achieving access to
a complete Digital Earth, and the next
generation of GIS—CyberGIS—with in-
tegrative high-performance, distributed,
and collaborative capabilities (25). We
have sought to make the case that spatial
ClI leads to discoveries in science. It is our
hope that articles in this Special Feature
have shown that spatial CI has facilitated
such advances and made them more rep-
licable, more readily distributed, and
certainly, better visualized. It is only by
advocating spatial CI that we will see the
cyber-enabled approaches emerge that can
make further scientific advances possible.
We urge the scientific community to wait
and see.
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