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Pelagic fish in the San Francisco Estuary (estuary) are harder to catch in recent 
decades. Over the past thirty years, Delta Smelt catch in the Fall Midwater Trawl 
(FMWT) has declined by 99%, Longfin Smelt catch has declined by over 95%, and 
even the notoriously hardy Striped Bass have declined by over 75% (California 
Department of Fish and Wildlife [CDFW] FMWT data, unpublished, see “Notes”). To 
manage the system and reverse these declines, we need a better understanding of 
the “bottom-up” processes that exert control on these populations—we need to study 
fish food. In other words, in addition to studying fish directly, we need to increase 
our understanding of what pelagic fish eat: zooplankton (Brown et al. 2016). 

Zooplankton are small, pelagic animals, including crustaceans, rotifers, and 
larval fish. These small animals are collected using fine mesh nets and are usually 
preserved when collected for later identification in a laboratory. In the estuary, 
zooplankton have been monitored regularly since 1972, and research conducted 
by the Interagency Ecological Program (IEP) has concluded that zooplankton 
have been in decline since the 1970s (Kimmerer and Orsi 1996; Orsi and Mecum 
1996), that fish are often food-limited (Sommer et al. 2007; Hammock et al. 2015), 
and that many invasive species have significantly altered the food web (Bouley 
and Kimmerer 2006; Winder and Jassby 2011). Zooplankton are also food limited 
because of loss of phytoplankton due to grazing by invasive clams (Kimmerer 
et al. 2014), changes to residence time by upstream dam releases (Jassby 2005), 
and potentially through loss of upstream subsides by freshwater exports (Jassby 
and Powell 1994; Jassby et al. 2002;  Hammock et al. 2019). In 2019, the IEP and 
associated groups, including the CDFW Fish Restoration Program, collected an 
estimated 3,148 zooplankton samples from the San Francisco Estuary (Figure 1). 
Researchers at UC Davis, San Francisco State University, and others contributed 
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hundreds more. Collectively, these samples were processed by traditional 
microscopy, image recognition software, and high-throughput sequencing to 
translate data about jars of animals into synthesized information that can improve 
management of the estuary’s ecosystem. 

Recent advances in online reference material, flow cytometry, image processing, 
genetics, autonomous samplers, quantitative modeling, and machine learning are 
making it easier to study zooplankton than ever before (Gislason and Silva 2009; 
Álvarez et al. 2011; Stanislawczyk et al. 2018; Ohman et al. 2019; Zamora–Terol 
et al. 2020). However, there is a disconnect between the information gathered from 
zooplankton data and management decisions. This is part of a broader issue about 
how science informs management, and how managers use field data; disconnects 
between scientists and managers are common throughout estuary resource 
management (Sommer 2020). 

Zooplankton data can be complicated and difficult to understand, making it 
less likely that the information will be acted on. Solving this problem means 
educating zooplankton ecologists about the water management landscape and 
educating managers about zooplankton. In the fall of 2020, the Delta Science 
Program and IEP convened a symposium to share the latest data and information 

Figure 1 Zooplankton sampling 
locations from the Delta Science 
Program’s integrated zooplankton 
data set. Sample timing varies from 
every 2 weeks to twice per year, and 
some stations have been sampled 
since 1972, whereas others have only 
been sampled since 2016. Data source: 
https://deltascience.shinyapps.io/
ZoopSynth/

https://deltascience.shinyapps.io/ZoopSynth/
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on zooplankton sampling methodology and ecology1. Researchers from across the 
country met not only to discuss the latest behavioral studies, habitat relationships, 
and sampling techniques, but also to discuss better integration of zooplankton 
data into water resource management. One major take-away of the workshop was 
the importance of increasing the quality of communication between zooplankton 
researchers and managers. 

One way to illustrate the relatively low degree of outreach by zooplankton 
researchers is to examine patterns in publications in the primary journal for the 
estuary, San Francisco Estuary Watershed Science (SFEWS). SFEWS is arguably the 
most management relevant scientific journal for the region because it is open 
access, has the single largest repository of articles about the system, targets a 
broad audience (e.g., managers, scientists, and educators), and has a relatively 
large readership (Luoma and Muscatine 2019). Based on a review of SFEWS 
publications (2003 through early 2021) that include 271 essays and research 
articles, we identified just two articles (Kimmerer and Slaughter 2016; Kimmerer 
et al. 2018) in which zooplankton were the featured topic, representing less than 
1% of the total articles published in that period. For comparison, we noted at 
least 13 articles which featured contaminants, a driver considered to be relatively 
underappreciated and understudied for the management of the estuary (Fong et al. 
2016). 

Zooplankton have not been ignored by estuary scientists and have been included 
as a factor in many SFEWS articles featuring fish or ecosystem processes (Slater 
and Baxter 2014; Brown et al. 2016; Frantzich et al. 2018). Still, the low number 
of feature articles about zooplankton themselves suggests that this topic will 
be less visible to resource managers. As a result, many new efforts towards 
habitat improvement in the estuary have been stymied by lack of understanding 
about zooplankton. For example, a recent structured decision-making effort to 
prioritize Delta Smelt recovery management actions began when consultants asked 
zooplankton researchers: “How much zooplankton is produced per acre of tidal 
wetlands in the estuary?” Zooplankton researchers did not know how to answer 
because: (1) zooplankton are undersampled in tidal wetlands; (2) the question was 
posed without a specific time of year, taxa of interest, or region of the estuary—
all of which impact production rates; and (3) researchers were hesitant to put a 
number on a metric of high uncertainty. Neither the researchers nor the managers 
knew how to ask and answer questions about zooplankton in a way that the other 
group could use to aid the decision-making process. 

Because zooplankton biology is complex, zooplankton ecologists need to become 
effective communicators and advocates for their data. This means becoming 
familiar with management-relevant research questions and management-relevant 
applications for existing data sets. One helpful way to approach this issue is to 
provide specific examples of management actions that could be informed by 
zooplankton data and which metrics are most relevant to management actions 
(Figure 2).

1. A livestreamed video of the symposium is available at this link:  
https://youtube.com/playlist?list=PLqTHCliW1HhoSZmAYfGtnNoFH3GSw_k5O.

https://doi.org/10.15447/sfews.2021v19iss3art1
https://youtube.com/playlist?list=PLqTHCliW1HhoSZmAYfGtnNoFH3GSw_k5O
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• Wetland restoration — Over 8,000 acres of tidal restoration are planned or recently 
completed in the upper estuary, under the premise that wetland restoration will 
increase food supply for at-risk fishes (Herbold et al. 2014; Sherman et al. 2017). 
Monitoring the effectiveness of these restoration projects hinges on measuring 
that food supply, much of which is in the form of zooplankton and aquatic 
macroinvertebrates. Useful metrics here include increases in biomass of the 
zooplankton before and after restoration, ability of fish to access zooplankton in 
the wetland, and percent of wetland carbon in zooplankton diets and biomass. 
(Figure 2A)

• Floodplain restoration — Early observations that floodplain habitats are rich in 
invertebrate food resources, including zooplankton, were a key rationale for 
recent floodplain restoration projects. For example, several projects within 
the Yolo Bypass floodplain are being designed to increase fish access to these 
resources either by allowing juveniles to rear on the floodplain or by flushing 
phytoplankton and zooplankton biomass from the floodplain to surrounding 
channels (Frantzich et al. 2018; Sommer et al. 2020). Important metrics include 
biomass of zooplankton on floodplains in comparison to surrounding rivers, 
timing of peak biomass in relation to length of inundation, and relative 
importance of zooplankton versus insects in fish diets. (Figure 2A)

• Release of hatchery fish — Salmonids have been raised in hatcheries to supplement 
wild populations for decades, and supplementation of Delta Smelt populations 
with cultured fish is pursuant to the 2019 US Fish and Wildlife Service Biological 
Opinion (USFWS 2019). However, fish released into a habitat without sufficient 
food resources may not be successful. Zooplankton data may be key for 
determining optimal release timing and locations to ensure adequate food 
supply (Beauchamp et al. 2004). Also, if fish are raised on processed fish food, 
they may need a “training period” during which they are fed zooplankton 
before release (Brown et al. 2003). Useful metrics here include distribution 
of zooplankton eaten by fish at potential release sites, seasonality of peak 
zooplankton abundance in relation to release timing, and taxa found in the wild 
that may be used for hatchery feed. (Figure 2B)

• Managed flow actions — Flow is considered a controlling variable that has a 
dominant effect on the environment of the estuary (Kimmerer 2002). Many 
management actions can include managing freshwater outflow to mimic 
a more natural hydrologic regime and improve overall ecosystem health 
(Sommer 2020). If these measures are effective, we would expect the aquatic 
community to have the same characteristics during a managed flow period as a 
natural high-flow period. Useful metrics here include zooplankton community 
composition, timing of peak biomass, and comparisons between natural flow 
regimes and managed flow actions. (Figure 2C)



5
https://doi.org/10.15447/sfews.2021v19iss3art1

SEPTEMBER 2021

• Water treatment — Recent upgrades to the Sacramento Regional Wastewater 
Treatment Plant are expected to reduce nutrient concentrations and alter 
nutrient ratios in the Delta, impacting primary and secondary productivity 
(Cloern et al. 2020). This may alter phytoplankton community composition 
and abundance, which may alter zooplankton community composition and 
abundance (Kraus et al. 2017). The degree to which this action will cascade up 
the food chain will depend on how zooplankton respond to the change in food 
source. Useful metrics include changes to zooplankton community composition 
and biomass before and after the upgrade, zooplankton diet, and presence of 
species sensitive to wastewater contaminants before and after the upgrade. 
(Figure 2D)

Figure 2 Management actions 
throughout the San Francisco 
Estuary can be improved by use of 
zooplankton data: (A) wetland and 
floodplain restoration, (B) release of 
fish from hatcheries or captive-rearing 
programs, (C) flow management, (D) 
water treatment

https://doi.org/10.15447/sfews.2021v19iss3art1
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While zooplankton ecologists must become effective in translating their research 
to apply to management actions, managers need also to improve their zooplankton 
literacy. It is not necessary to know everything about zooplankton, but some 
understanding of their role in the food web will help identify situations in which 
zooplankton data may be informative and allow the development of management-
relevant questions. Towards that goal, we suggest a few facts about zooplankton 
from the recent symposium that resource managers should be aware of (Figure 3).

• Zooplankton are diverse and the specific species that are present matter. While 
fish in the estuary comprise two taxonomic classes (a difference equivalent 
to that between birds and mammals), zooplankton comprise multiple phyla 
(differences equivalent to those among vertebrates, worms, insects, and all 
other types of animal life). The fish community usually has between 40 and 
110 species, depending on salinity (Stompe et al. 2020). Zooplankton includes 
hundreds of species (Kayfetz et al. 2020). Not all zooplankton make good fish 
food, and different zooplankton taxa may respond to different environmental 
conditions. While some generalizations apply, a single metric of zooplankton 
abundance may not provide the information needed to assess management 
actions. (Figure 3A)

• Zooplankton are not passive particles — Zooplankton cannot actively swim against a 
strong current, but they can move up and down in the water column to “surf” 
with the tides, avoid predation, and maintain their position in the estuary 
(Kimmerer et al. 1998). These movements can even impact how carbon is 
cycled through the ecosystem (Steinberg and Landry 2017). Hence, increased 
freshwater flow will not simply flush zooplankton into San Francisco Bay. 
(Figure 3B)

• Timing is important — Zooplankton have seasonal life history patterns. Many 
fish (such as Striped Bass) eat zooplankton only during the early part of their 
life. Some zooplankton taxa may be an order of magnitude more abundant 
during the summer than the winter (Hennessy 2018). Higher zooplankton 
concentrations can increase fish feeding success, growth rates, and 
survivorship (Sommer et al. 2001; Baskerville–Bridges et al. 2004). Therefore, 
management actions that target increases in zooplankton should be timed when 
fish can best take advantage of these resources. (Figure 3C)

• Our zooplankton come from all over the world — Some non-native zooplankton can have 
sweeping impacts on zooplankton communities (Strecker and Arnott 2008), 
leading to both bottom-up and top-down effects on the ecosystem. However, 
not all invaders are created equal. The non-native copepod, Pseudodiaptomus 
forbesi, now composes 30% to 50% of summertime Delta Smelt diets (Slater 
and Baxter 2014; Slater et al. 2019). In contrast, another non-native invasive 
copepod, Limnoithona tetraspina, is much smaller than P. forbesi (and therefore 
not as nutritious), and it is selected against by fish (Bouley and Kimmerer 2006; 
Slater and Baxter 2014; Sullivan et al. 2016). Monitoring programs should watch 
carefully for new zooplankton species and be ready to evaluate their new role in 
the ecosystem. (Figure 3D)
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• Climate change impacts zooplankton — As the estuary warms, the zooplankton 
community may shift towards species with smaller body size, higher thermal 
tolerance, or different timing of peak abundance. Individual species may also 
adapt to the changing environment (Dam 2013). These changes could impact 
fish by creating a mismatch between the timing of peak food availability and 
critical fish development stages. Therefore, management actions that work 
under current conditions may not have the same impacts on zooplankton in the 
future. (Figure 3E)

• Zooplankton eat many different things. While most often thought of as primary 
consumers of phytoplankton, larger, predatory copepods prey on smaller 
zooplankters and may even control their population (Kayfetz and Kimmerer 
2017). Therefore, some zooplankton may compete with fish for food resources. 
Other zooplankton may eat plant detritus more often than we think, 
particularly near tidal wetlands (Harfmann et al. 2019). Some zooplankton 
even eat cyanobacteria traditionally thought of as “poor food” (Kimmerer et al. 

Figure 3 Some aspects of 
zooplankton science and ecology 
are important to understanding 
management implications of 
zooplankton data: (A) zooplankton 
community composition impacts 
their role in the environment, (B) 
zooplankton move to avoid predators 
and maintain their location, (C) 
zooplankton have seasonal cycles of 
growth and reproduction, (D) non-
native species are common in the 
estuary, and new species may change 
the community, (E) climate change 
may shift the community towards 
smaller species, (F) zooplankton may 
eat detritus and other zooplankton, 
as well as many different types of 
phytoplankton, (G) zooplankton data 
are time-consuming to collect and 
require specialized skill sets

https://doi.org/10.15447/sfews.2021v19iss3art1
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2018) or fail to thrive on diatoms considered “good food” (Jungbluth et al. 2020). 
Protists and bacteria are frequently ignored but are also an important part 
of the food web (Rollwagen–Bollens et al. 2011). This means that zooplankton 
feeding (and therefore fish feeding) may not follow simple linear responses to 
management actions designed to increase phytoplankton. (Figure 3F)

• Zooplankton sample processing is time consuming and labor-intensive, which needs to be 
factored into monitoring for management actions. One fish trawl generally 
takes between 15 and 30 minutes to collect and process. One zooplankton 
sample takes approximately 15 minutes to collect and between one and 8 hours 
to process through traditional microscopy. Occasionally, samples can take up 
to 16 hours to process due to high amounts of debris or organic matter. High 
processing times mean that zooplankton data often are not available until a 
year after collection, further complicating the ability to determine the effects 
of management actions. Genetic analysis and photo-recognition software could 
greatly reduce processing time (Gislason and Silva 2009; Bucklin et al. 2016), but 
still take more time than water quality or fish data. (Figure 3G)

In the San Francisco Estuary, we are fortunate to have a long history of 
zooplankton monitoring, providing both scientists and resource managers with a 
wealth of information to work with (Kayfetz et al. 2020). Recent efforts to integrate 
some of the data from different monitoring programs and visualize the results 
(Bashevkin et al. 2020) will increase our ability to use zooplankton data to make 
decisions, but only if scientists and mangers can collaborate to make zooplankton 
meaningful. 

To maximize the use of these data for management, we propose several 
recommendations for both managers and scientists:

• Managers and scientists should work together to develop clear goals and objectives for 
management actions. Is there a threshold of zooplankton biomass or abundance 
to achieve? Or is the goal simply higher biomass of certain taxa? This will make 
it easier to design a study that provides management-relevant results. 

• Scientists should understand management goals and keep the end goal in mind. If the 
end goal is fish food, study taxa that are most common in fish diets. If the 
primary interest is contaminant effects, focus on sensitive species. 

• Invest in new technology. Many new zooplankton sampling and analysis methods, 
such as autonomous samplers, metabarcoding, and photo-recognition, produce 
data that is different in taxonomic resolution or quantitative accuracy (or both) 
when compared to traditional microscopy (Gislason and Silva 2009; Bucklin 
et al. 2016; Ohman et al. 2019). However, these tools may provide faster and 
more useful data for some applications, and often reduce costs. Integrating 
new sampling techniques with recent quantitative advances in zooplankton 
modeling may allow data to be used in a more predictive way.
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• Communicate openly. To maximize the value of zooplankton data, it is important to 
maximize its accessibility to scientists and managers. Scientists should share 
data in publicly available places in easy-to-read formats as recommended by 
Kayfetz et al. (2020). Similarly, managers should share lessons learned from 
management actions widely, and use them for adaptive management. Both 
scientists and managers should be encouraged to ask questions of each other 
to ensure both understand the best uses for zooplankton data. This sharing of 
information can occur during project-specific technical meetings, at scientific 
conferences and symposia, through distribution of memos and fact sheets, 
peer-reviewed scientific papers, or even through blog posts. Using multiple 
communication avenues will be more helpful than relying on a single platform.

Keeping these recommendations in mind will allow the broader resource 
management community to effectively manage the entire ecosystem, including 
zooplankton, and perhaps gain a greater appreciation for these critters for their 
own sake—not just as fish food. Returning to our Delta Smelt structured decision 
model example, a more productive conversation could have started this way: “We 
want to compare the relative benefit of wetland restoration and flow actions. Can 
we quantify the contribution of tidal wetlands to Delta Smelt food resources?” 
Defining the reason behind the question (Delta Smelt food resources) allows the 
zooplankton scientist to home in on the type of data that will be most useful. Even 
though tidal wetlands are understudied, the zooplankton scientists could provide 
a summary of available data to see whether any generalities can be made. The two 
groups (managers and scientists) can have a dialog about which metrics can best 
be used to compare wetlands and flow actions: Biomass of zooplankton per acre or 
productivity of phytoplankton per acre? We hope that this type of discussion can 
lead to better incorporation of zooplankton research results into water resource 
management decisions. 
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